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Abstract: Energy-efficient virtual machine (VM) consolidation has become a critical technique for reducing power 
consumption in cloud data centers. This review explores the role of heuristic and metaheuristic scheduling algorithms 
in optimizing consolidation decisions to minimize energy use while maintaining service quality. It provides an in-depth 
analysis of commonly used approaches such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony 
Optimization, alongside their trade-offs in performance, scalability, and migration overhead. The paper also outlines 
key evaluation metrics and identifies current limitations in deployment, including scalability, hardware heterogeneity, 

and lack of standardized benchmarking. Finally, it highlights emerging research directions, such as integration with 
renewable energy models and learning-enhanced heuristics. The review aims to guide researchers toward more 
sustainable and practical solutions for intelligent resource management in modern cloud environments. 
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I. INTRODUCTION 
Cloud computing has reshaped how organizations and individuals access computing resources, offering scalable, 

flexible, and cost-efficient services on demand. This shift toward cloud-based infrastructure has led to the rapid expansion of 
hyperscale data centers around the globe, operated by public cloud providers such as Amazon Web Services, Microsoft Azure, 
and Google Cloud. With this expansion comes a critical and growing concern: the substantial energy consumption of cloud 
data centers and its impact on operational costs, resource efficiency, and environmental sustainability. It is estimated that 
data centers contribute approximately 1% to 2% of global electricity usage, a figure that has remained relatively stable due 

to improvements in hardware efficiency and power management strategies, despite exponential growth in workloads [1]. 
However, projections suggest that without continued innovation in energy optimization, particularly in virtualized and cloud 
environments, energy demands may become unsustainable as digital services continue to scale. 

At the heart of this challenge lies the issue of resource underutilization. Despite high-performance hardware and 
advances in virtualization technologies, many cloud servers operate at low average utilization levels often between 10% and 
50% while still consuming up to 70% of their peak power [2]. Virtualization allows multiple virtual machines (VMs) to run 
concurrently on a single physical machine (PM), isolating workloads and improving flexibility. Yet, the lack of effective 
resource management and workload distribution mechanisms means that many servers remain underused, leading to 
unnecessary power consumption and operational inefficiencies. VM consolidation has emerged as one of the most practical 
and widely studied approaches to improve energy efficiency in virtualized environments. The principle of VM consolidation 
is straightforward: migrate VMs from lightly loaded servers to a smaller number of physical hosts and turn off or power 

down the now idle machines. In doing so, overall resource utilization is improved, and significant energy savings can be 
realized. However, the implementation of this concept in large-scale, heterogeneous, and dynamic environments presents 
significant computational and operational challenges. 

A typical VM consolidation process involves three key stages: (1) VM selection, where VMs are identified for migration 
from overloaded or underutilized hosts; (2) host selection, where target servers are selected for the incoming VMs; and (3) 
VM placement, where decisions are made to ensure optimal allocation while avoiding violations of service level agreements 
(SLAs) and minimizing migration overhead. These stages must be executed in a manner that balances energy consumption, 
performance guarantees, and system stability. Traditionally, exact optimization techniques such as Integer Linear 
Programming (ILP) or Mixed Integer Programming (MIP) have been proposed to solve the VM placement and consolidation 
problem optimally. While these methods can provide high-quality solutions, their applicability to real-time, large-scale cloud 
environments is limited due to their high computational complexity [3].  

As a result, heuristic and metaheuristic algorithms have gained significant attention in the cloud computing research 
community. These algorithms provide approximate solutions that are computationally efficient and scalable, making them 
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suitable for online and large-scale optimization problems. Heuristic methods include simple rules such as First Fit (FF), Best 
Fit (BF), and their variants like Modified Best Fit Decreasing (MBFD), which prioritize speed and ease of implementation. On 
the other hand, metaheuristic algorithms inspired by natural processes and intelligent behavior have demonstrated strong 
potential in balancing multiple conflicting objectives. Techniques such as Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO), and Simulated Annealing (SA) have been extensively studied for 
energy-aware VM consolidation due to their ability to explore vast solution spaces and escape local optima [4]. These 

algorithms are particularly well-suited for tackling the multi-objective nature of the VM consolidation problem, which 
typically involves minimizing energy consumption, reducing SLA violations, limiting migration frequency, and optimizing 
resource utilization. 

For example, PSO mimics the social behavior of bird flocks or fish schools to search for near-optimal VM placement, 
while GA uses evolutionary principles such as crossover and mutation to evolve solutions over generations. These algorithms 
can be adapted and hybridized for instance, combining GA with PSO or integrating ACO with fuzzy logic to better handle 
specific workload patterns or data center constraints [5]. Hybrid heuristics often outperform standalone methods by 
leveraging the strengths of each technique and mitigating their respective weaknesses. In practice, evaluating these 
algorithms requires standardized simulation environments and realistic workload traces. Tools such as CloudSim, 
GreenCloud, and iCanCloud have become popular for simulating VM consolidation strategies in controlled settings. These 
tools allow researchers to model data center architectures, simulate VM behavior under different consolidation policies, and 

measure key performance metrics such as energy savings, migration count, SLA violation percentage, and CPU utilization. 
Publicly available workload traces like those from PlanetLab or Bitbrains are commonly used to benchmark the algorithms 
under real-world conditions [6]. 

Despite significant progress, several challenges remain. First, the computational overhead of metaheuristic 
algorithms, while lower than exact methods, can still be non-trivial in real-time environments. Second, VM migration itself 
introduces energy and performance penalties, particularly if not carefully managed. Overly aggressive consolidation can lead 
to thrashing, where frequent migrations degrade application performance and violate SLAs. Third, existing algorithms often 
assume ideal or static conditions, which may not reflect the highly variable and heterogeneous nature of modern cloud 
workloads. As cloud providers strive to meet stricter energy efficiency goals and regulatory requirements, there is a pressing 
need for more adaptive, SLA-aware, and workload-predictive consolidation strategies and Heuristic and metaheuristic 
scheduling algorithms are likely to play a central role in this evolution. This review aims to provide a comprehensive 

overview of heuristic approaches for energy-efficient VM consolidation, highlighting the algorithms that have shown the 
most promise, the evaluation methodologies used, and the limitations that still need to be addressed.  

II. ENERGY CONSUMPTION CHALLENGES IN CLOUD DATA CENTERS 
Cloud data centers serve as the physical foundation of modern digital services, hosting a wide variety of workloads 

from enterprise systems to social media platforms and AI applications. While the flexibility and scalability of cloud 
infrastructure have revolutionized computing, these benefits come at the cost of high energy consumption. With increasing 
pressure on both the economic and environmental fronts, understanding the nature of energy consumption within cloud 
data centers and the challenges associated with minimizing it has become a critical research focus. 

A. Sources of Energy Consumption in Data Centers 
A cloud data center typically comprises thousands of servers, network switches, storage units, power supply units, 

and cooling systems. Energy consumption in such facilities is primarily attributed to two categories: IT equipment energy 
and infrastructure (non-IT) energy. The IT energy component includes servers, networking hardware, and storage devices. 
Servers alone often account for more than 40% of the total data center energy consumption [7]. Even when lightly loaded or 
idle, servers consume a substantial fraction of their peak power typically between 60% and 70% due to static power draw 
from components such as memory, motherboard, and storage [8]. 

Non-IT energy, on the other hand, is primarily used for cooling, lighting, and power conversion losses. Among these, 
cooling systems are the most significant contributor, accounting for roughly 40–50% or more of total power consumption in 
traditional setups [9]. Air conditioning, chillers, and airflow management systems are required to maintain optimal thermal 
conditions to ensure reliable operation and hardware longevity. One widely accepted metric for assessing how efficiently a 
data center uses energy is the Data Center infrastructure Efficiency (DCiE) metric. DCiE quantifies the proportion of total 
energy that is actually consumed by IT equipment (e.g., servers, storage, networking) versus overhead systems such as 

cooling and power delivery. It is formally defined as: 

               (
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A higher DCiE indicates a more energy-efficient facility, as more of the power is utilized directly for computation. For 
example, a DCiE of 50% means that only half of the data center's energy is powering the actual IT workload, while the other 
half is consumed by supporting infrastructure. This metric is the inverse of the more commonly cited Power Usage 
Effectiveness (PUE), where: 

             
                    

                  
  

 

    
               

In practical terms, a PUE of 2.0 corresponds to a DCiE of 50%, indicating significant scope for improvement in energy 
efficiency. Neil Rasmussen, in his widely cited white paper on electrical efficiency in data centers, provides a detailed 
breakdown of energy distribution that closely aligns with the data illustrated in the chart.  

 
Figure 1: Energy Consumption IT vs Non IT Equipment in Data Centers 

According to this model, IT equipment accounts for only 47% of the total energy consumption in a typical data center. 
The remaining 53% is consumed by non-IT infrastructure components, such as chillers (23%), CRAC/CRAH units (15%), 
humidifiers (3%), PDUs (3%), uninterruptible power supplies (UPS, 6%), lighting (2%), and switchgear (1%). This 
breakdown clearly demonstrates that supporting infrastructure consumes more power than the computing equipment itself 
[10].  

B. Resource Underutilization and Its Energy Impact 
One of the paradoxes in cloud computing is the coexistence of high energy consumption with poor resource utilization. 

Studies have shown that, on average, servers in enterprise and cloud data centers operate at utilization levels between 10% 

and 50% [11]. This is largely due to overprovisioning allocating more resources than necessary to meet potential peak 
demands and static workload distribution policies. In virtualized environments, the situation is often compounded by 
conservative VM provisioning strategies. System administrators typically allocate VM resources based on worst-case scenarios 
to avoid SLA violations, which results in low average utilization and excess energy usage. 

The Power Usage Effectiveness (PUE) metric is commonly used to assess data center energy efficiency, defined as the 
ratio of total facility power to the power used by IT equipment as in (2). While hyperscale data centers operated by companies 
like Google and Facebook have achieved PUE values close to 1.1 through innovations in cooling and infrastructure design, 
many smaller or legacy data centers still report PUE values in the range of 1.6 to 2.0. This means that for every watt consumed 
by computing equipment, another 0.6 to 1.0 watts are consumed just to support the infrastructure. Ultimately, these 
inefficiencies translate into higher operational costs and a larger carbon footprint. According to a report by the International 
Energy Agency, data centers emitted approximately 300 megatons of CO₂ equivalent globally, a figure comparable to the 

entire airline industry. 

C. Dynamic and Unpredictable Workloads 
Cloud workloads are inherently dynamic. Applications experience fluctuating demand patterns due to user behavior, 

time-of-day effects, and regional access trends. For example, video streaming services may see peak demand during 
evenings, while e-commerce platforms may experience surges during promotional events. This unpredictability makes it 
difficult to optimize energy usage statically. Provisioning for peak load ensures service reliability but leads to underutilization 
during off-peak periods. Conversely, aggressive consolidation without accounting for potential workload spikes can result in 
performance degradation, SLA violations, and even system failures. 



Khaja Kamaluddin / ESP IJACT, 1(3), 201-211, 2023 

204 

Furthermore, modern cloud applications are often designed as microservices, which interact in complex and 
distributed ways. These applications have varying CPU, memory, I/O, and network bandwidth requirements over time, 
making it challenging to model or predict their resource demands accurately. Without adaptive and intelligent management, 
data centers may either overconsume power or risk performance bottlenecks. 

D. VM Consolidation: A Solution with Its Own Set of Challenges 
As discussed in the previous section, VM consolidation offers a promising approach to mitigate energy inefficiency by 

dynamically reallocating VMs to minimize the number of active physical servers. However, consolidation is not without its 
challenges. First, VM migration a fundamental operation in consolidation incurs non-negligible overhead in terms of CPU 
usage, memory copying, and network bandwidth consumption. Live migration of VMs can momentarily degrade 
performance and consumes additional energy. While migration strategies such as pre-copy and post-copy have reduced 
downtime, they still impact the overall energy-performance trade-off [12]. 

Second, frequent migrations can lead to SLA violations, particularly for latency-sensitive applications. Balancing the 
frequency and timing of migrations against the potential energy savings is a non-trivial optimization problem. Third, 
consolidation can result in hotspots servers that become overloaded after absorbing multiple VMs if not managed carefully. 
These hotspots may lead to thermal stress, hardware throttling, or further migrations, ultimately negating the initial energy 
gains. Finally, consolidation strategies must also consider heterogeneity in server hardware and energy profiles. Not all 
servers consume power at the same rate, even when handling similar workloads. Selecting the most energy-proportional 

servers for active use is a critical part of an effective consolidation policy. 

E. Limitations of Traditional Energy-Saving Techniques 
While VM consolidation represents a dynamic, system-level energy-saving strategy, other traditional methods such as 

Dynamic Voltage and Frequency Scaling (DVFS), power capping, and hardware-level sleep states also play a role. However, 
these techniques have limitations in cloud environments. DVFS, for instance, is less effective when processors are already 
operating at low utilization levels. Power capping, while preventing thermal overrun, may limit performance. Similarly, 
transitioning servers in and out of sleep states involves latency and energy overheads that make them impractical for 
frequent changes unless carefully orchestrated [13]. Moreover, many of these hardware-level techniques operate in isolation, 
without coordination with VM-level resource allocation, leading to suboptimal results. The absence of a holistic, multi-
layered energy management framework makes it difficult to achieve significant and sustained energy reductions. 

III. OVERVIEW OF VM CONSOLIDATION TECHNIQUES 

As cloud computing environments become larger and more complex, managing data center resources efficiently has 
turned into a major challenge. At the heart of energy-conscious strategies lies Virtual Machine (VM) consolidation a method 
that helps reduce energy usage while still ensuring reliable service. Though the idea itself isn’t new, its relevance has grown 
significantly as data centers increasingly aim to balance three key priorities: performance, cost, and sustainability. In this 
section, we break down the essential concepts, types, and steps involved in VM consolidation.  

A. VM Consolidation and Its Purpose 
VM consolidation refers to the dynamic relocation of virtual machines across physical servers in such a way that a 

smaller number of machines remain active, while others can be transitioned into low-power states or powered down 
entirely. The goal is to maximize server utilization while minimizing the number of running machines, thus reducing overall 
energy usage. 

The underlying workflow involves three stages: 
 Monitoring: Continuously observe resource usage and VM performance across the infrastructure. 
 Analysis and Decision-making: Determine which servers are underutilized and identify which VMs should be 

migrated. 
 Migration: Move the selected VMs to better-suited hosts, then power down or suspend the now idle machines. 

By reducing the number of active servers, data centers can cut down on both direct IT power consumption and 
indirect infrastructure overhead, such as cooling and power delivery, which are proportionally tied to the number of active 
machines. 

B. Types and Strategies of VM Consolidation 
Over time, various VM consolidation strategies have emerged, each suited to different operational scenarios and objectives. 
Broadly, these techniques can be categorized along several dimensions: 
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a) Static vs Dynamic Consolidation: 
 Static consolidation involves assigning VMs to hosts during deployment, with no further migration afterward. While 

this approach is simpler, it assumes that workload patterns remain constant an unrealistic expectation in cloud 
environments. 

 Dynamic consolidation, on the other hand, monitors the system in real time and makes decisions on-the-fly based on 
current resource utilization. It is more suitable for elastic and volatile workloads, which are common in modern 

cloud computing. 

b) Offline vs Online Consolidation 
 Offline strategies are scheduled during predefined intervals often during maintenance windows and rely on known 

workloads. These methods are typically less time-sensitive and may be optimized using batch processing techniques. 
 Online strategies, by contrast, operate continuously and must make rapid decisions using partial or uncertain 

information. They are essential for managing live environments, where delays or misjudgments can impact user 
experience or breach SLAs. 

c) Single vs Multi-objective Consolidation 
In earlier implementations, consolidation efforts focused on a single optimization goal, such as reducing the number of active 
servers. However, real-world scenarios require a multi-objective approach that simultaneously minimizes: 

 Energy consumption 

 VM migration overhead 
 SLA violations 
 Resource fragmentation 

Multi-objective formulations are more complex, but they reflect the reality of data center operations, where trade-offs 
must be carefully navigated. 

 
Figure 2: VM Consolidation 

C. Trade-offs and Limitations 
While VM consolidation offers clear benefits in terms of energy efficiency and resource optimization, it's not without its 

challenges. If not managed carefully, it can introduce several issues: 
 Frequent VM migrations can disrupt performance and slow down systems. 
 Service Level Agreement (SLA) violations may occur, especially in latency-sensitive applications where every 

millisecond counts. 
 Resource contention on the destination servers can emerge, as multiple VMs compete for limited CPU, memory, or 

bandwidth. 

Ironically, energy consumption may increase instead of decrease, particularly if the energy used during migration 
outweighs the savings from shutting down idle servers. Moreover, effective consolidation isn’t as simple as just moving VMs 
around. It must consider the diverse capabilities of servers, differences in energy usage patterns, and fluctuating VM 
workloads all of which make the task more complex. Because of this complexity, traditional rule-based methods or exact 
optimization models often fail to scale in real-world data centers. Instead, heuristic and metaheuristic algorithms have 

emerged as practical solutions as they offer the flexibility and speed needed to make smart, adaptive decisions in 
unpredictable and fast-changing environments. 

IV. HEURISTIC SCHEDULING ALGORITHMS – FOUNDATIONS AND TAXONOMY 
As established in earlier sections, VM consolidation serves as a powerful approach to reduce energy consumption in 

cloud data centers. However, its real-world implementation depends on intelligent decision-making mechanisms capable of 
handling multiple constraints in real time. These decisions when to migrate, which VMs to move, and where to place them 
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are all combinatorial optimization problems, and solving them optimally is computationally infeasible in large-scale, dynamic 
environments. This is where heuristic and their extended class called metaheuristics, offer practical solutions by sacrificing 
exact optimality in favor of scalability, speed, and acceptable solution quality. This section explores the foundations of 
heuristic scheduling in cloud environments, classifies key algorithms, and highlights how they are applied to address the 
challenges of energy-aware VM consolidation. 

A. Why Heuristics? 

The core scheduling decisions in VM consolidation involve NP-hard problems, such as bin-packing (placing VMs on 
servers), load balancing, and SLA-aware resource distribution. Solving these exactly through linear programming or 
exhaustive search becomes exponentially time-consuming as the number of servers and VMs increases. Heuristic methods 
offer problem-specific shortcuts strategies that guide the search for good solutions based on experience, domain knowledge, 
or simplified rules. They don’t guarantee the best solution, but they can find near-optimal solutions quickly and consistently, 
making them ideal for real-time systems. More advanced forms, known as metaheuristics, further enhance this capability by 
introducing mechanisms like memory, randomness, adaptation, or population-based search, allowing exploration of vast 
solution spaces while avoiding local optima 

B. Taxonomy of Heuristic and Metaheuristic Algorithms 
a) Rule-Based Heuristics: 

These are deterministic algorithms based on predefined rules. They are typically fast and simple, making them 

suitable for baseline performance or comparison purposes. 
 First Fit (FF): Assigns VMs to the first server that has enough capacity. 
 Best Fit (BF): Places each VM on the server where it will leave the least remaining capacity. 
 Worst Fit (WF): Places VMs on servers with the most available capacity, helping to balance load. 

A widely cited example in VM consolidation is Modified Best Fit Decreasing (MBFD), introduced by Beloglazov and 
Buyya in [14], where VMs are sorted by decreasing CPU usage and assigned to the host that would cause the lowest power 
increase.  

b) Metaheuristic Algorithms: 
Metaheuristic algorithms form a more advanced class of heuristics, designed to find near-optimal solutions in highly 

complex, large-scale, and multi-objective optimization problems like VM consolidation. Unlike rule-based heuristics, 
metaheuristics incorporate randomness, adaptation, or population-based strategies that allow them to escape local optima 

and explore a broader solution space. 

c) Genetic Algorithms (GA) 
Genetic Algorithms are perhaps the most extensively studied metaheuristics for VM consolidation, thanks to their 

flexible representation and robust search capabilities. Modeled after the principles of natural evolution, GAs represent each 
potential solution such as a specific mapping of VMs to hosts as a chromosome. A population of these chromosomes evolves 
over successive generations through the application of genetic operators like selection, crossover, and mutation. The fitness 
function typically evaluates energy efficiency, SLA compliance, or a weighted combination of both. In multi-objective 
scenarios, GA variants like the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to identify Pareto-optimal 
placements, enabling the system to explore multiple trade-off solutions instead of just one. The adaptability of GAs has made 
them a common choice for hybridization as well, often combined with local search heuristics to accelerate convergence. 

Although GA can be computationally expensive, its ability to explore diverse solutions makes it well-suited for environments 
with highly variable workloads and heterogeneous resource demands [15]. 

d) Particle Swarm Optimization (PSO) 
Inspired by the way birds flock or fish swim in schools, Particle Swarm Optimization (PSO) is a smart, population-

based technique used to explore potential VM placement strategies. In this approach, each "particle" represents a candidate 
solution and moves through the search space, learning from both its own past performance and the success of its peers. 
When applied to VM consolidation, PSO is particularly effective at quickly spotting areas in the solution space that lead to 
lower energy consumption. Its ease of implementation and fast convergence make it especially well-suited for real-time 
scheduling, where quick decisions are essential. However, PSO isn’t without its limitations. If the swarm converges too early, 
it can settle on poor solutions especially when factors like network bandwidth, migration overhead, or varying server 
capabilities come into play.  
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Figure 3: VM Consolidation through Heuristic Algorithms For Energy Efficient Scheduling And Objectives 

e) Ant Colony Optimization (ACO) 
Ant Colony Optimization (ACO) takes inspiration from how real ants find the shortest paths to food using pheromone 

trails. In the computing world, this behavior is mimicked by having virtual "ants" build solutions step by step, reinforcing the 
most successful paths based on how well they perform. In the context of VM consolidation, ACO treats the task as a kind of 
path-building problem each decision to assign a VM to a server becomes part of a larger placement strategy. As better 
placements are discovered, the virtual pheromone trails strengthen, helping guide future decisions toward energy-efficient 
and low-migration configurations. ACO stands out in environments where factors like network layout, data locality, and 
migration costs are especially important. However, it has its trade-offs. Because ACO updates its solutions gradually through 
repeated iterations, it often converges more slowly than techniques like Genetic Algorithms or Particle Swarm Optimization. 
Additionally, its computational demands grow as the size of the data center and the number of VMs increase [16]. 

f) Simulated Annealing (SA) 
Simulated Annealing (SA) is inspired by a process in metallurgy where materials are slowly cooled to form a stable, 

low-energy structure. Similarly, the SA algorithm explores possible solutions by making small, random tweaks to the current 

one and sometimes even accepting worse options in the early stages. This randomness helps avoid getting stuck in poor-
quality solutions. But as the "temperature" lowers over time, the algorithm becomes more selective, gradually focusing on 
improvements only. In VM consolidation, SA helps refine placement decisions step by step, by weighing the energy impact of 
small VM migrations. Its simple design and ability to escape local traps make it especially useful when the goal is to find a 
good enough solution without heavy time pressure. However, SA isn’t without challenges. Its effectiveness depends heavily 
on how it's tuned, and it doesn't naturally handle multiple conflicting goals like balancing energy use, performance, and 
migration cost unless it’s specifically adapted for that purpose [17]. 

Table 1: Comparative Summary of Metaheuristic Algorithms For VM Consolidation 

Algorithm Inspiration Strengths Limitations Typical Use in VM 
Consolidation 

Genetic Algorithm 
(GA) 

Natural 
evolution 

Good for multi-objective 
optimization; maintains 

diversity 

Slower convergence; 
high computational 

overhead 

SLA-aware placement, 
energy-performance 

trade-offs 

Particle Swarm 
Optimization 

(PSO) 

Swarm 
intelligence 

Fast convergence; simple 
implementation 

Sensitive to parameter 
tuning; local optima 

risk 

Energy-efficient 
scheduling under tight 

time constraints 

Ant Colony 
Optimization 

(ACO) 

Ant foraging 
behavior 

Network/migration cost-
aware; adaptable 

Slow convergence; 
pheromone update cost 

Network topology-
aware VM placement 

Simulated Metallurgical Escapes local minima; simple Requires careful cooling Iterative improvement 
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Annealing (SA) annealing design schedule; slow in large 
search spaces 

under constrained 
migration budgets 

Hybrid 
Metaheuristics 

Algorithm 
combinations 

High accuracy; better 
exploration/exploitation 

balance 

High complexity; 
tuning needed 

Large-scale 
consolidation with 

multiple conflicting 
objectives 

g) Hybrid Metaheuristics 
Hybrid metaheuristics bring together the best of multiple algorithms to achieve better performance whether it's faster 

convergence, smarter decision-making, or higher-quality solutions. A popular example is blending Genetic Algorithms (GA) 
with Particle Swarm Optimization (PSO). In this setup, GA’s strong global search ability is combined with PSO’s quick 
convergence to improve optimization in dynamic, ever-changing environments. Other creative combinations include pairing 
Ant Colony Optimization (ACO) with fuzzy logic, which helps the algorithm make smarter choices under uncertainty 
particularly useful when workloads are unpredictable or highly variable. 

These hybrid strategies are especially useful in large-scale data centers, where there’s a constant need to juggle 

multiple priorities like energy efficiency, load balancing, and SLA compliance all at once. While they often outperform single-
method approaches, hybrid algorithms can be more complex to design, tune, and run. That said, thanks to modern parallel 
processing and distributed scheduling frameworks, hybrid metaheuristics are becoming more feasible and practical for 
tackling the challenges of cloud-scale VM consolidation. 

V. EVALUATION FRAMEWORKS FOR HEURISTIC-BASED VM CONSOLIDATION 
As heuristic and metaheuristic algorithms continue to dominate research on energy-efficient VM consolidation, a 

parallel question becomes increasingly important: how do we evaluate their effectiveness? Without a consistent and rigorous 
evaluation framework, comparisons across studies lose reliability, and real-world adoption becomes speculative. This section 
presents an in-depth look at the evaluation methodologies typically used to test heuristic-based VM consolidation techniques, 
focusing on simulation platforms, benchmark datasets, performance metrics, experimental design, and current limitations in 
the field. 

A. Simulation Platforms 
Most research on VM consolidation especially involving heuristic algorithms relies on simulation due to the cost, risk, 

and scale of implementing new strategies in production cloud environments. Among the simulation tools available, CloudSim 
has become the most widely used due to its extensibility and modular architecture.  

 Developed by Calheiros et al. [18], CloudSim supports the modeling of data center resources, VM provisioning, 
energy-aware policies, and dynamic workloads, making it ideal for testing scheduling algorithms in repeatable 
scenarios. Although CloudSim provides basic energy modeling capabilities, these are limited to CPU power 
consumption. As a result, several extensions have been proposed to enhance its realism. For instance, 
CloudSimEnergyPlus and CloudSimEx add more detailed power models, thermal data, and migration overhead 
simulations [19]. 

 Another platform, GreenCloud, built on the NS2 network simulator, is specifically designed for energy-efficient cloud 

computing research. It provides fine-grained power models that include network and cooling energy, making it more 
suitable for studies that want to capture holistic data center energy consumption. However, it suffers from slower 
performance and limited scalability, especially for large-scale consolidation experiments. 

 iCanCloud, a C++-based platform, supports real cloud workload emulation and offers high configurability. Its strength 
lies in its ability to simulate commercial cloud provider environments (e.g., Amazon EC2 models), which makes it 
useful for algorithm testing in monetized settings. Still, its steep learning curve and limited adoption in recent studies 
have constrained its visibility in mainstream VM consolidation research. 

In summary, while CloudSim remains dominant due to its balance of functionality and simplicity, researchers often 
extend or hybridize simulation platforms to reflect their specific needs and assumptions raising questions about 
comparability and reproducibility across studies. 

B. Benchmark Workloads and Datasets 
Heuristic scheduling algorithms are typically evaluated using either synthetic workloads or real-world trace data. The 

most common synthetic workloads are randomly generated VM requests with varying CPU, memory, and bandwidth 
requirements. These allow researchers to control experimental variables precisely, but lack realism, which can limit external 
validity. To overcome this, several studies use real-world traces, with PlanetLab, Google cluster traces, and Bitbrains being 
the most cited datasets. 
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 PlanetLab, used notably by Beloglazov and Buyya in [14], contains CPU utilization traces from over 1,000 VMs 
running across globally distributed servers. The data includes realistic variability in resource demand, making it 
suitable for evaluating dynamic VM consolidation strategies. 

 Google cluster traces provide logs of workload behavior in production-scale clusters, including job start/end times, 
CPU/memory requests, and actual usage. However, these traces are anonymized and lack some metrics (e.g., energy 
usage), requiring researchers to make modeling assumptions about host specifications and power profiles. 

 Bitbrains traces offer more detailed records, including time-series data on CPU, memory, disk, and network usage for 
enterprise workloads. These datasets allow for multi-resource-aware algorithm testing, and are particularly useful for 
testing multi-objective heuristics. 

Despite the value of these datasets, they often require preprocessing, normalization, or resource mapping before use, 
which may introduce inconsistencies across studies. Furthermore, since trace datasets do not include real energy 
measurements, most simulations approximate energy consumption using mathematical models like the linear CPU-power 
model proposed in [20]. 

C. Evaluation Metrics 
The effectiveness of heuristic-based VM consolidation is typically measured using a combination of performance, energy, and 
reliability metrics. The most widely used include: 

 Total Energy Consumption: Measured in kilowatt-hours (kWh), this metric evaluates the overall energy used by the 

active physical machines over the simulation duration. It often uses models like: 
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where   is CPU utilization. This model, assumes a linear power-utilization relationship and is used across CloudSim-

based studies. 
 Number of VM Migrations: Since migration incurs network and CPU overhead, fewer migrations generally indicate a 

more efficient or stable consolidation strategy. Algorithms that migrate too frequently can degrade performance and 
increase energy use. 

 SLA Violation Percentage: This is the proportion of time that VM performance constraints are not met (e.g., CPU 
usage exceeding the host's capacity). It is a critical QoS metric, especially in commercial clouds where penalties apply 
for SLA breaches. 

 Execution Time of the Algorithm: Metaheuristics, particularly population-based ones like GA and ACO, may require 
significant processing time. For online scheduling scenarios, runtime becomes a bottleneck and must be measured. 

 Resource Utilization Metrics: These include average CPU and memory utilization across all hosts. Higher utilization 

generally correlates with better energy efficiency but may increase the risk of SLA violations if not balanced. 

Table 2: Core Evaluation Metrics for Heuristic-Based VM Consolidation In Cloud Data Centers 

Metric Unit Definition / Formula Relevance 

Total Energy 
Consumption 

 
kWh 

Total energy used by all active physical machines over 
the simulation period. 

Primary indicator of energy 
efficiency achieved through 

consolidation. 

Number of Active 
Hosts 

 
Count 

Number of physical servers kept on during simulation. Directly reflects the 
consolidation ratio and energy-

saving potential. 

SLA Violation Rate  
% or 
Ratio 

                  

                     
      

Measures performance 
degradation caused by 

consolidation decisions. 

Number of VM 
Migrations 

 
Count 

Total VM relocation events triggered by the 
consolidation algorithm. 

Reflects operational overhead 
and potential system instability. 

Migration Energy 
Consumption 

 
kWh or 
Joules 

Estimated energy cost due to data transferred during 
VM migrations. Often calculated using: 

       
where D is data size and C is cost per GB. 

Helps assess hidden energy 
overhead of aggressive 
migration strategies. 

Average CPU 
Utilization 

 
% 

                                 

              
      

Indicates how well resources are 
being used after consolidation. 

Power Usage 
Effectiveness 

(PUE) 

 
Ratio 

                     

                   
 

Widely adopted industry metric 
to assess overall data center 

energy efficiency. 



Khaja Kamaluddin / ESP IJACT, 1(3), 201-211, 2023 

210 

D. Experimental Configurations and Design Considerations 
An often-overlooked component of algorithm evaluation is the initial setup and configuration. Many studies do not 

explicitly state host configurations, initial VM placement strategies, or cooling policies, which can lead to wide variation in 
outcomes. For instance, assuming homogeneous physical hosts versus heterogeneous hosts significantly affects how well 
algorithms like PSO or ACO adapt to placement challenges. Similarly, the assumed migration bandwidth, network delay, and 
server power models play a crucial role in accurately estimating migration cost or energy.  

To mitigate such variability, recent papers emphasize the need for transparent, reproducible configurations. Some 
even publish their code and datasets publicly via GitHub or Zenodo, setting a precedent for more open benchmarking. 
Another critical design factor is test duration and simulation window size. Shorter simulations may not capture workload 
fluctuations or the long-term impact of consolidation decisions. Many studies use a simulation window of one day (86400 
seconds) to emulate production cycles, while others simulate only peak-load intervals, which may not reveal the true 
efficiency of the algorithm under average load 

E. Limitations and Gaps in Current Evaluation Practices 
Despite significant progress, the evaluation landscape for heuristic VM consolidation still faces several challenges and 

gaps. A primary concern is the lack of standardization across studies. Researchers often use different versions of CloudSim or 
modify it internally without fully documenting their changes, making results hard to compare or reproduce. Another major 
limitation is the over-reliance on simulation. While simulation offers scalability and control, it cannot capture real-world 

phenomena like hardware faults, power anomalies, thermal drift, or unpredictable user behavior. These factors can 
significantly affect consolidation strategies, particularly in large-scale or multi-tenant environments.  

Moreover, energy models are often simplistic, typically focusing only on CPU power while ignoring power drawn by 
memory, storage, cooling systems, or network interfaces. While such approximations are computationally efficient, they may 
understate the total energy savings or overhead introduced by a given algorithm. Finally, few studies evaluate the long-term 
sustainability or hardware wear-and-tear implications of frequent VM migrations. Frequent transitions can degrade SSDs, 
increase fan cycles, or shorten hardware lifespan costs that aren’t reflected in traditional energy or SLA metrics. 

VI. FUTURE RESEARCH DIRECTIONS AND CONCLUSION 
Heuristic and metaheuristic algorithms have undoubtedly advanced the field of energy-efficient VM consolidation, 

offering clever ways to reduce power consumption without heavily compromising performance. Yet, despite the growing body 
of research, translating these solutions into real-world deployments has proven challenging. Much of the existing work 

remains confined to theoretical settings, simulations, or small-scale testbeds. Moving forward, it’s essential that future 
research addresses the practical realities of modern cloud environments including deployment complexity, sustainability goals, 
and the need to adapt to dynamic operating conditions. 

One exciting direction lies in aligning consolidation strategies with the availability of renewable energy. As data centers 
increasingly turn to solar and wind power, there's potential to schedule VM consolidation in sync with periods of peak green 
energy production. This means moving workloads not just based on resource load, but also considering where and when clean 
energy is available. For instance, migrating VMs to a region powered by solar during the day, or shifting workloads away from 
areas experiencing low renewable supply. Of course, this would require careful coordination between consolidation algorithms, 
power grid forecasts, and orchestration systems but it’s a direction that could bring environmental and economic benefits. 

Another major area that needs attention is scalability. Many current algorithms perform well in controlled 

environments, but their performance often declines when applied to large-scale infrastructures. Hyperscale data centers, 
managing thousands or even hundreds of thousands of VMs, demand solutions that can scale efficiently. One way to approach 
this is through hierarchical or distributed scheduling, where local decision-makers handle consolidation within clusters or 
regions under broader energy policies. This can help maintain responsiveness without overwhelming central systems. 

A promising future path also involves merging traditional heuristics with learning-based techniques. For example, 
reinforcement learning could help algorithms adapt over time, learning from past migration decisions and evolving to make 
smarter choices under varying conditions. These hybrid approaches won’t replace heuristics, but they can enhance them 
making them more flexible and better suited to unpredictable environments. 

There’s also a pressing need to factor in economic and regulatory realities. Saving energy is important, but it’s not the 
only consideration. The cost of VM migrations, licensing issues, data locality constraints, and SLA penalties can all influence 
whether a consolidation plan is viable in practice. Future research should explore cost-aware and policy-compliant algorithms 

that reflect these real-world concerns, rather than optimizing solely for energy and performance. 
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Lastly, to truly understand the long-term value of consolidation strategies, we need better evaluation methods. Most 
current studies focus on short-term energy savings, ignoring deeper impacts like hardware wear, cooling loads, or cumulative 
energy trends. Metrics that account for these factors combined with shared datasets and standardized test environments 
would help researchers compare approaches more fairly and ensure findings are reproducible. 
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