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Abstract: In the current era of technological advancement, the proliferation of diverse data sources has revolutionised 

decision-making processes across the globe. This exponential growth in data availability has reshaped decision-making 

paradigms and unlocked unprecedented opportunities for applying machine learning methodologies. Mainly, domains 

such as disease detection and intricate economic analysis have witnessed a significant transformation due to the 

advent of machine learning algorithms. Amidst these developments, the incidence of breast cancer continues to surge 

in both developed and developing nations, posing significant challenges to healthcare systems worldwide. In response 

to this pressing concern, this study endeavours to amalgamate these trends by comprehensively analysing major 

machine learning models to classify breast cancer tissues. Utilising the Wisconsin Breast Cancer Dataset as the 

foundational framework, this research aims to evaluate the efficacy of various machine learning algorithms in 

distinguishing between benign and malignant tissues. The repertoire of machine learning models under scrutiny 

encompasses Logistic Regression, Gaussian Naïve Bayes, K-Nearest Neighbors (KNN), as well as two variants of 

Support Vector Machine (SVM) — Radial Basis Function (RBF) and Linear classifier. Additionally, the study 

incorporates Decision Tree Classifier and Random Forest (RF) algorithms into its comparative analysis. The study's 

findings underscore the pivotal role of Random Forest (RF) and the diverse variations of Support Vector Machine 

(SVM) in achieving remarkable classification accuracy. Moreover, these models exhibit superior precision, recall, and 

f1-score performance metrics, highlighting their efficacy in breast cancer tissue classification tasks. 
 

Keywords: Support Vector Machine (SVM), Logistic Regression, Gaussian Naïve Bayes, K-Nearest Neighbor (KNN), 

Decision Tree Classifier, Random Forest (RF). 
 

I. INTRODUCTION 

Recent technological advancements have revolutionised various aspects of human life, significantly increasing the 

volume and diversity of available data. This influx of data has profoundly influenced decision-making processes across 

industries, including business operations (Ozgur et al., 2015). The growing abundance of data underscores the importance of 

practical data analysis, which has proven invaluable in diverse fields such as disease detection, sales forecasting, economic 

analysis, and pattern recognition (Kaur et al., 2018). Consequently, the surge in data-driven insights has spurred extensive 

research in the realm of machine learning, offering powerful analytical tools and techniques. 
 

Machine learning, a discipline within computer science, aims to enable computers to emulate human activities and 

continuously enhance their performance through self-improvement mechanisms (Wang et al., 2009). This field boasts many 

applications, including image recognition, sentiment analysis, news categorisation, video surveillance, prediction modeling, 

and recommender systems. 
 

Breast cancer stands as one of the most prevalent malignancies worldwide, posing a significant threat to individuals 

in both developed and developing nations. Failure to detect breast cancer early can have life-threatening consequences, 

making early diagnosis imperative (Asri et al., 2016). Recent data indicate a notable rise in breast cancer cases, particularly 

in developing regions like Africa, underscoring the urgency of effective diagnostic methodologies (Walker et al., 2004). 

Consequently, researchers have turned to machine learning models to classify breast tissue samples intelligently as benign or 

malignant, leveraging datasets like the Wisconsin Breast Cancer Dataset (WBCD) (Seddik & Shawky, 2015). Various machine 

learning algorithms, including logistic regression, support vector machines, neural networks, and naive Bayes classifiers, 

have been explored for breast cancer classification, each offering unique insights into the disease (Edriss et al., 2016; Kharya 

& Soni, 2016; Al-Hadidi et al., 2017). 
 

In light of the diverse opportunities presented by machine learning, this study endeavours to assess the performance 

of multiple machine learning models using the WBCD from the UCI data repository. The study aims to shed light on the 

efficacy of different machine learning algorithms in breast cancer diagnosis by employing rigorous evaluation metrics and 
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conducting detailed analyses. Noteworthy models under investigation include logistic regression, k-nearest neighbour, 

support vector machines (linear and radial basis function classifiers), naive Bayes, decision trees, and random forests. 
 

The burgeoning interest in machine learning has fueled research efforts to enhance learning efficiency and explore 

novel applications across various domains (Loussaief & Abdelkrim, 2017; Boiy & Moens, 2009; Suleymanov & Rustamov, 

2018). As depicted in Figure 1, machine learning encompasses diverse subfields and methodologies, reflecting the 

multidimensional nature of this rapidly evolving discipline (Dey, 2016). This research seeks to contribute to the ongoing 

discourse on machine learning applications, particularly in the context of breast cancer diagnosis and treatment. 
 

 
Figure 1: Types of Machine Learning (Dey, 2016) 

 

The diagram illustrates the various types of machine learning: supervised, unsupervised, semi-supervised, 

reinforcement learning, multi-task learning, ensemble learning, neural networks, and instance-based learning. For this 

research, the premium is placed on the supervised learning technique and one borrowed concept of the instance-based 

learning technique, precisely the K-Nearest neighbour approach 
 

Supervised machine learning is a machine learning technique that employs algorithms that mostly need external 

assistance. The dataset is categorised into two sets, namely, the training set and the testing set. Essentially, the training 

dataset, by its nature, has a corresponding output variable that needs to be classified or predicted. All learning algorithms 

can study patterns from the training set and subsequently apply them to the training dataset for prediction and classification 

(Kotsiantis, 2007). Figure 2 shows a diagram of supervised machine learning algorithms. This methodology motivated the 

adapted model that is further used in the methods of this paper. 
 

As emphasised by (Kotsiantis, 2007), the initial step in any machine learning endeavour is the meticulous selection of 

the right data source. This is followed by a crucial data pre-processing phase to minimise noise and eliminate unnecessary 

features that could compromise data integrity in the subsequent supervised learning process. Algorithm selection ensues, 

followed by training based on standardised partitioning methods determined by the data scientist's discretion. Evaluation is 

conducted using test data, with optimal classifiers accepted, while non-ideal ones are subjected to parameter readjustments 

until an ideal classifier is attained. 
 

The UCI Machine Learning Repository is a renowned repository for machine learning datasets, encompassing data 

generators, databases, and domain theories extensively utilised by the machine learning community for empirical analysis. It 

hosts the Wisconsin Breast Cancer Dataset, compiled from Fine Needle Aspirate (FNA) human breast tissue samples. This 

dataset comprises 699 clinical cases, with 458 (65.50%) identified as benign and 241 (34.50%) as malignant (Ahmed 

Medjahed et al., 2013). The dataset contains 16 missing observations, limiting the experiment to 683 clinical cases. Following 
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classical machine learning methodology, the performance evaluation of machine learning models necessitates partitioning 

the database into training and testing sets. 
 

 
Figure 2: The Workflow of Supervised Machine Learning Algorithms (Kotsiantis, 2007) 

 

The dataset features of the Wisconsin Breast Cancer Dataset include radius, texture, perimeter, area, smoothness, 

compactness, concavity, and concave points. The rise in breast cancer cases globally has spurred the development of 

numerous machine-learning models aimed at facilitating its detection through binary classification (Seddik & Shawky, 2015; 

Shravya et al., 2019; Nguyen et al., 2013; Kharya & Soni, 2016). With the advent of robust machine learning platforms, there 

is an opportunity to implement and evaluate the performance of diverse machine learning models, enabling more profound 

analysis, especially on breast cancer datasets sourced from repositories like UCI. 
 

The surge in breast cancer incidences, coupled with the need for decentralised and accurate diagnosis, along with the 

evolution of machine learning paradigms, underscores the rationale behind this research endeavour. The study focuses on 

six machine learning models: Logistic Regression, K Nearest Neighbor, Support Vector Machine (Linear Classifier), Support 

Vector Machine (RBF Classifier), Gaussian Naive Bayes, Decision Tree Classifier, and Random Forest Classifier. The 

implementation environment of Google's cloud-based machine learning laboratory, Colab, was chosen due to its extensive 

machine learning and data science libraries and robust online computing power, which are essential for conducting 

computationally intensive machine learning implementations. 
 

II. MODELS IN MACHINE LEARNING 

The inspiration and mathematical underpinnings of the machine learning models, as considered in this paper, are 

highlighted in the following sub-headings. 
 

A. Logistic Regression Model 

Logistic regression fits well in situations where there is the need to create a model relationship between two sets of 

variables, namely, a categorical outcome variable and a set of predictor variables (Seddik & Shawky, 2015).  

Mathematically, logistic regression represents a binary output   that is expressed as: 
 

   ( )                                                                                              ( ) 
 

Where ( ) is a vector that has                     independent predictors.  ( ) Represents the conditional 

probability of experiencing the event     given the independent variable vector   with   as a random error term.  ( ) is 

expressed as: 
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  represents the model’s parameter vector and alternatively could be written as: 
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The above function is called the Logit Link function. It is observed that whereas the right side is linear for   the left-hand 

side is not linear regarding  . Alternatively, the logit function could be represented in the odds ratio: 

(
 

   
)  

 (   )

 (   )
   

                                                                      (   ) 

 

The odds ratio indicates the likelihood of event Y=1 occurring. The impact of x_i, the independent variable, on the 

odds ratio is measured by the term e, signifying the change in the odds ratio for a one-unit increase in the independent 

variable x_i while holding another variable constant. A higher value of the term implies a more significant effect on the 

predicted probability of the resulting output. This helps in ranking predictors based on their influence on the outcome 

(Seddik & Shawky, 2015) and utilises the Pearson goodness-of-fit to assess the suitability of the constructed model for the 

observed data points. Alternatively, Deviant Statistics can also be employed to evaluate the fit quality. 
 

B. Gaussian Naïve Bayes 

Naïve Bayes forms part of a statistical classification algorithm grounded on Bayes theorem. The training stage is 

characterised by data point estimates of a class label using class probabilities and conditional probability. In cases of two 

classed datasets, data point classification is done with a premium to the higher-class probability. 

The Bayes theorem calculates the posterior probability of samples in the c class using equation (5)(Güzel & Engineering, 

2013). Naïve Bayes classifiers are mathematically represented as: 
 

 ( |        )  
 (          | ) ( )

 (        )
                                         

 ( |        )  
 ( )          

  (  | )

 (        )
                                                  

 

The Naive Bayesian classification model is simple and assumes that the classification features are independent and 

have no correlation between them. However, it has become evident that the notion of attribute independence is not entirely 

true for all cases, and since then, there has been some innovation to increase performance (Karthika & Sairam, 2015).  

The Naive Bayesian algorithm based on the description provided is given as follows: 

 Let   be the training set with   tuples where each tuple is represented as a ‘   dimensional attribute vector  , 

where   *         +  
 Let there be     classes           . According to this Naive Bayesian classifier, a tuple   belongs to the class    

only when it has a higher conditional probability than any other class   ,  where        

 (  |  )     (  |  ) and  (  |  )    ( (  |       (   ))    ( ) 

 Since class conditional independence is assumed,  

 (  |   )   ∏ (   |   )

 

   

    (  )     (  )     (  )      (   ) 

 Class    is predicted as the output class when 
 (  |   )     (  )     (  |   )     (  )                             

 

C. K-Nearest Neighbour 

K-Nearest Neighbour is one of the well-known and most used machine learning areas. It is an instance-based 

methodology that does not require a learning phase like the other models. The training sample selection is associated with 

the choice function, and the distance function is motivated by the nearest neighbours in the model. A similarity measure is a 

basis for comparison before any classification is done(AhmedMedjahed et al., 2013). 

The algorithm is summarised as: 

 Choose a value for the parameter   

Input: Give a sample of N examples and their classes 

 The class of a sample   is  ( )  

 Give a new sample    

 Determine the k-nearest neighbor of   by calculating the distances 
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 Combine classes of these   examples in one class c 

Output: the class of   is  ( )    
 

The various distance measures of the KNN are City-block distance (1-distance), Euclidean distance (2-distance), 

Minkowski distance (p-distance), and others. 
 

D. Support Vector Machine 

Support Vector Machines (SVMs) offer a novel algorithm for data classification and regression. This allows the 

expansion of data provided by a training set to be expressed as a linear combination of a subset of data within the training 

set (Fields, 1998). SVMs develop a hyperplane that separates data by class using a training tuple called support vectors, 

transforming the training dataset into a higher dimension (Agarwal, 2014). During training, the convex cost function 

optimises without local minima, simplifying the learning process. Model evaluation involves using support vectors to classify 

the test dataset, with performance based on determining the error rate as the test dataset size approaches infinity. Extensive 

literature details SVM algorithms' mathematical formulation and underpinnings for data classification and regression 

(Campbell, 2002). 
 

A critical consideration is selecting a suitable kernel function to transform non-separable data into a new feature space 

where they become separable. Standard kernel functions include Linear, Polynomial, Radial Basis Function, and Sigmoid 

(Agarwal, 2014). The SVM process, as summarised by Agarwal, involves several key steps: 

1. Nonlinear mapping transforms original training data into a higher-dimensional space, known as kernelling, with 

kernel functions selected based on research requirements. An optimal linear separating hyperplane, the decision 

boundary, is sought within this transformed dimension. 

2. With an appropriate nonlinear mapping to a sufficiently high dimension, a hyperplane can always separate data 

from two classes. 

3. The SVM locates this hyperplane using support vectors (essential training tuples) and margins defined by the 

support vectors. 
 

SVMs offer advantages such as accuracy in high-dimensional spaces and memory efficiency through the use of support 

vectors. However, they are prone to overfitting, significantly when the number of features exceeds the sample size, and do 

not provide probability estimates, which are often desirable in classification problems. SVMs may also exhibit inefficiencies 

with small datasets. 
 

E. Random Forest 

A Random Forest (RF) is a classification algorithm in Machine Learning that employs multiple decision trees. It 

operates as an Ensemble of Classifiers, where decision tree attributes are chosen randomly. RF is conceptualised as an 

ensemble technique inspired by the concept of randomised tree ensembles. The core unit of an RF is a binary tree formed 

through recursive partitioning. The construction of an RF, as delineated by (Nguyen et al., 2013), involves the following 

steps: 

1. Generate n-tree bootstrap samples from the original dataset. 

2. Construct a tree for each bootstrap dataset. At each tree node, randomly select and try variables for splitting. Grow 

the tree to ensure each terminal node contains fewer cases than the specified node size. 

3. Aggregate information from the n trees to predict new data, such as employing majority voting for classification. 

4. Compute an out-of-bag (OOB) error rate using the data excluded from the bootstrap sample. 
 

F. Decision Tree 

Decision Tree classifiers are integral to supervised classification methodologies (Zhao & Zhang, 2007). They draw 

inspiration from the structure of a typical tree, comprising roots, nodes, branches, and leaves, with its construction primarily 

centred on nodes (Ali et al., 2012). 
 

The application of Decision Tree classifiers has notably advanced pattern recognition in classification tasks. Early 

research focused on character recognition and image classification (Safavian & Landgrebe, 1991). Decision Trees are superior 

in handling complex classification problems due to their adaptability and computational efficiency. 
 

The underlying principle of a decision tree is to delineate all potential decision paths in a tree-like structure. The 

fundamental steps involved in constructing a decision tree include: 

1. Selecting an attribute from the dataset. 

2. Assessing the significance of the attribute in data partitioning. 

3. Partitioning the data based on the value of the selected attribute. 

4. Iterating the process from step 1 to further refine the decision tree. 
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III. TECHNICAL PERFORMANCE ANALYSIS AND JUSTIFICATION 

The underlying methodology of this paper is an adaptation of supervised learning (Kotsiantis, 2007). Figure 3 

summarises the step-by-step approach to the experiment. 
 

 
Figure 3: An Adaptation of the Supervised Machine Learning Model on WBCD (Kotsiantis, 2007) 

 

As previously mentioned, the other processes remain consistent with the original flowchart apart from platform 

identification. Machine learning researchers utilise various evaluation metrics to assess the performance of machine learning 

model experiments on the designated dataset. This paper gives particular attention to the Classification Report provided by 

the implementation platform. 
 

The Scikit-learn library offers a range of convenient reporting tools tailored for classification problems, providing 

insights into the model's accuracy across multiple measures. The classification_report() function available on the Google 

Colab platform utilises a set of algorithms to return specific metrics for evaluating machine learning models. These metrics 

include: 

 Precision: This indicates the percentage of correct predictions, focusing on the accuracy of positive predictions. 

 Recall: Representing the ratio of true positives to the sum of true positives and false negatives, recall identifies the 

correct percentage of positives. 

 F1-score: The F1 score is a weighted harmonic mean of precision and recall, with a perfect score of 1.0 and a 

minimum score of 0.0. F1 scores incorporate precision and recall into their calculation, resulting in values lower 

than accuracy measures. 

 Support: Support refers to the number of occurrences of each class in the specified dataset. 

 

IV. RESULTS AND DISCUSSION 

After platform identification and data preprocessing, which was characterised by eliminating null and unnecessary 

attributes, a random partitioning of the dataset into 75% for training and 25% for testing was agreed upon. It should be 

noted that all data preparation processes, including the labelling of categorical and dependent attributes, were done. The 

attribute correlation was also considered to enhance understanding of the feature attributes. The training accuracies of the 

dataset after training are summarised in the bar graph in Figure 3. 
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Figure 4: Training Accuracy of Machine Learning Models 

 

It became extremely evident that the Decision Tree Classifier (DTC) obtained a perfect score of 1.00, which ideally 

confirms the superb performance of DTC on relatively more minor datasets like the WBCD. Following closely in terms of 

training performance are the random forest classifier, logistic regression, and the two variations of SVM, specifically the 

linear kernel and the RBF kernel. The Classification report during the testing phase generated the following outcomes of 

interest, as illustrated in Table 1 below: 
 

Tab 1: Classification Report Summary of the Machine Learning Models 

Machine learning Model  Precision Recall F1-score Support 

Logistic Regression 0 0.96 0.96 0.96 90 

1 0.92 0.92 0.92 53 

K Nearest Neighbour 0 0.95 0.99 0.97 90 

1 0.98 0.91 0.94 53 

SVM (Linear Classifier) 0 0.98 0.97 0.97 90 

1 0.94 0.96 0.95 53 

SVM (RBF Classifier) 0 0.97 0.98 0.97 90 

1 0.96 0.94 0.95 53 

Gaussian Naive Bayes 0 0.93 0.94 0.94 90 

1 0.90 0.89 0.90 53 

Decision Tree Classifier 0 0.99 0.93 0.96 90 

1 0.90 0.98 0.94 53 

Random Forest Classifier 0 0.98 0.97 0.97 90 

1 0.94 0.96 0.95 53 
 

It should be noted that the labelling of the dependent attributes transformed Malignant to a 1 value and benign tissues 

to a zero value. Table 1 gives the classification report's precision, recall, and f1-score values. It is observed that RFC and the 

two variations of the SVM (RBF and linear classifier) had the best averages in terms of precision, recall, and f1-score in the 

region of 0.96, emphasising its impressive performance in the testing phase. KNN had a fantastic average precision of 0.965 

and recorded lower scores for recall and F1-score. The Decision Tree Classifier was similar to logistic regression for average 

recall and f1-score values. The Gaussian Naïve Bayesian model recorded the lowest performance in terms of averages for 

precision, recall, and f1-score. The testing phase recorded the following accuracies, as shown in the graph in Figure 4.  
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Figure 4: Testing Accuracy per Model 

 

It became evident that unlike the testing phase, where the decision tree had a perfect score, a very different drift was 

seen in the outcome of the testing. It is observed that the Random Forest Classifier and the two variations of the Support 

Vector Machine had the most impressive performance, with a classification accuracy of 0.965. KNN also gave an impressive 

showing during the testing phase of the experiment and ranked 2
nd

 after RFC and SVM. This is after ranking 6
th

 in training. 

The Decision Tree classifier also ranked 3
rd 

in testing after ranking 1
st
 in the training phase of the research. It is generally 

observed the Gaussian Naïve Bayes model does not do too well in both phases of the experiment, ranking last in both 

scenarios. 
 

V. MODEL CHALLENGES AND DEFICIENCIES 

The performances of these machine learning models must be put in the proper perspective. Even though there were 

quite impressive accuracies in some models, it must be noted that the application area needs a predictive model that 

guarantees prediction or diagnosis with the most minimal margin of error. This has inspired the development of ensemble 

models that are carefully engineered to have better and more accurate classification accuracy along with various evaluation 

metrics. 
 

As established in this paper, some challenges of the machine learning models include the following. 

1. Decision Tree algorithms are generally inadequate in the application of regression and prediction of continuous 

values 

2. Random forest is generally noted to have slower prediction rates, which may trigger challenges in real-time 

applications 

3. The decision on which type of distance to use and which attribute to employ to obtain better results is unclear in 

KNN implementation. 

4. One known disadvantage of Logistic regression is that it struggles with its restrictive expressiveness, and due to this, 

other models may have better performances. 

5. One widespread disadvantage of Gaussian Naive Bayes classifiers is the apparent assumption of independence of 

class features, which makes it nearly impossible to find a data set of that kind. 
 

VI. CONCLUSION 

The diverse array of machine learning models, coupled with the expanding sources of datasets, underscores the 

importance of comprehending model behaviour. Disease detection and diagnosis, within the realm of machine learning and 

artificial intelligence, are pivotal for achieving swift and reliable diagnoses in the future. Using a pertinent evaluation metric, 

known as the Classification report, notable testing performances were observed in the Random Forest Classifier and the SVM 

(RBF and Linear kernels). These models exhibited commendable precision, recall, and f1-score values when applied to the 

Wisconsin Breast Cancer Dataset from the UCI repository. The aggregate performance of the machine learning models 

underscores the imperative to develop more hybrid and intelligent models to enhance the efficiency of these fundamental 

algorithms, including ensemble techniques. Additionally, conducting similar tests on larger datasets could yield valuable 
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insights into the performance of these models. These interventions, among others, are crucial additions to ongoing efforts to 

achieve optimal efficiency and classification accuracy of machine learning models. 
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