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Abstract: The rapid evolution of payment card fraud techniques necessitates advanced detection frameworks capable of 
adapting to emerging threats with minimal delay. Most of these systems have problems detecting unknown fraud patterns 
and allow much inaccurate positive detection. New hybrid architecture has been proposed using Large Language Models 
(LLMs), Graph Neural Networks (GNNs) and context together, which helps to detect fraud for the card authorization 
process promptly and reliably. The LLM section can extract meaningful metadata through using advanced methods, while 
the GNN component dynamically models transactional relationships and propagates risk scores across entities such as 
customers, merchants, and transactions. Because of this design, the method adapts better, achieves a balanced precision 
and recall and allows the system to understand and explain its actions through graph features and attention. When tested 

using anonymized transaction samples, the system achieved much better results in zero-day fraud, fewer false positives 
and shorter processing times. The research mentions that there are problems with scaling, privacy, ongoing training and 
explaining models and outlines how more research can focus on working together, using multiple data sources and testing 
regulations in practice. This integrated approach lays the foundation for next-generation, context-aware fraud detection 
systems that can safeguard payment ecosystems while delivering seamless user experiences. 

Keywords: Fraud Detection, Large Language Models (LLMs), Graph Neural Networks (GNNs), Zero-Day Fraud, 
Explainable AI (XAI). 

I. INTRODUCTION 
With the rapid digital growth, millions of consumers and businesses are conducting finances in new ways [1]. The 

essential part of this system is the payment card authorization process, which checks that a transaction is real and approves or 
declines it in real time [2]. Transactions normally require the bank, the payment gateway and groups in between to connect and 

verify that each action made is legitimate. Since the amount and complexity of electronic payments are increasing, the need to 
safeguard these transactions from fraud rises [3]. 

Because of progress in payment technology, fraudsters have become even better at what they do. Conventional ways of 
detecting fraud which rely on easy-to-use models do not work well against the large number of sophisticated fraud schemes 
today [4]. Some of these systems have a problem known as high false positives, when real transactions are denied by mistake, 
which causes poor user experience and may reduce the company’s profits. Also, such approaches depend on previous data and 
fixed rules; they find it hard to spot new types of zero-day fraud. Given how fraud threats change, more intelligent, adaptable 
and contextual fraud detection is needed. 

The reason for using context in fraud detection lies in the fact that, on its own, analyzing transactions is not accurate 
enough to label actions as being either fraudulent or legitimate. Signals from the context, including merchant category, 
reputation and location, device fingerprint, timing of the purchase and the buyer’s behavior record, and key information to help 

detect fraud [5]. Enriching their data in this way helps fraud detection systems better spot unusual activities as they are 
happening. 

Transformer-based LLMs which have appeared recently in artificial intelligence give powerful help in using context in 
fraud detection [6]. LLMs were first meant for natural language tasks and have shown strong abilities in processing contextual 
data from various sources. LLMs are able to notice subtle problems and unusual behavior in payments using merchant 
descriptions, transaction details and customer actions which traditional tools might not spot [7]. Since they can handle a lot of 
data and change quickly, they work well with real-time fraud detection pipelines. Adaptability further makes them well-suited for 
integration into real-time fraud detection pipelines. 
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The high-level architecture of a hybrid fraud detection system shown in Figure 1 makes use of both transformer-based 
LLMs and graph neural networks (GNNs). Here, LLMs take in transaction and merchant information to improve the context for 
all parties, and GNNs handle the links between customers, businesses and each transaction. Thanks to this setup, transactions 
can trigger risk signals in real-time, which gives a valid and easy-to-understand approach to preventing fraud. The hybrid 
technique strives to correct mistaken detections by tracking linked fraud signals that are hard to find in isolation. 

 
Figure 1: High-Level Diagram of a Hybrid Fraud Detection System Leveraging LLMs and GNNs for Contextualized, Real-

Time Card Authorization 

Research Objectives:  
The objectives of this research are: 

 To investigate and suggest a method that works together with large language model (LLM) technology and graph neural 
networks (GNNs) to help detect fraud cases in real time when authorizing payment cards. 

 To demonstrate how this hybrid approach reduces false positives and effectively captures zero-day fraud signatures, 
ensuring a seamless user experience and compliance with regulatory and audit requirements. 

 To highlight and evaluate how scalable, quick and understandable the system should be before putting it into real-world 
payments. 

II. BACKGROUND 
A. Large Language Models (LLMs) 

LLMs have improved natural language processing by utilizing transformers, which are experts at understanding the 
relationships between sequential pieces of data [8]. GPT (Generative Pre-trained Transformer), BERT (Bidirectional Encoder 
Representations from Transformers) and RoBERTa (Robustly Optimized BERT Pretraining Approach) are special in different 
ways that make them useful for different fraud detection tasks. 

a) Overview of Transformer Architectures 

Thanks to self-attention, transformers consider all the tokens in a sequence equally, letting the model build richer 
contextual descriptions. GPT models use autoregression, so they predict the next token depending on already generated tokens. 
BERT is different in that it has a bidirectional encoder to look at both sides of a sentence, offering more insight into the overall 
input. Because it employs superior training methods and takes in larger datasets, RoBERTa usually performs better than BERT. 
Comparison between thess transformer architecture is depicted in table 1. 

b) Contextual Embeddings and Tokenization 
Transaction metadata in fraud detection (such as merchant codes, places and device identifiers) can be processed into 

embeddings that go beyond plain categorical or numerical data. Tokens are produced from the transaction fields, and then 
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language models put them into vector spaces that display how these tokens relate to one another [9]. With these embeddings, it 
becomes possible to discover hidden and subtle ways fraud may occur that standard features might not catch. 

c) Real-Time Capabilities and Scaling Considerations 
When authorising cards on the spot using LLMs, it must be clear how to face the time-sensitive and resource challenges. 

Recent enhancements in model distillation, quantization and better versions of the transformers help embed the data quickly for 
streaming payments [10]. Even so, making the model small but still fast to use is crucial, especially in places where fast decisions 

happen every second. 

B. Graph Neural Networks (GNNs) 
Using Graph Neural Networks (GNNs), data from the payment ecosystem can be conveniently modelled, as customers, 

merchants and transactions are all linked together in graphs [11]. 

Table 1: Comparison of Transformer Architectures Relevant to Fraud Detection 

Feature GPT BERT RoBERTa 

Architecture Autoregressive Transformer Bidirectional Transformer Optimized Bidirectional 
Transformer 

Training Objective Next-token prediction Masked language modeling Masked language modeling with 
dynamic masking 

Context Understanding Left-to-right context Full bidirectional context Full bidirectional context with 
improved training 

Embedding Generation Generates token embeddings 
sequentially 

Contextual embeddings from 
entire input 

Same as BERT with enhanced 
performance 

Suitability for 
Metadata 

Good for sequential metadata Strong for contextual 
metadata 

Improved robustness on diverse 
inputs 

Real-Time Inference 
Speed 

Generally faster, lighter 
models 

Heavier, slower in inference Similar to BERT, slightly more 
resource intensive 

Adaptability to New 
Patterns 

Good, can generate novel 
embeddings 

Strong contextual clues Enhanced generalization due to 
training 

 
a) Basics of Graph Representation 

Things like merchants and customers are represented as nodes, and they are linked by edges, which show the connections 
between them (such as a transaction edge between a customer and a merchant). Things like transaction sums, the time of the 

transaction and risk estimates can be associated with nodes and links on the graph, recording specific details about users and 
merchants. 

b) Message Passing and Edge-Weighted Risk Propagation 
Messages are passed along edges on the graph and nodes gather nearby information to update their representations. By 

exchanging messages, risk signals can spread so that unusual activity in one part of the network alerts other areas and supports 
finding similar groups or strange trends [12]. 

c) Real-Time Scoring for Transactional Risk 
Contemporary GNNs permit real-time scoring of incoming transactions by checking their placement and neighbors in the 

continuous graph [13]. The authorization pipeline runs efficiently and is still able to detect current threats accurately because of 
efficient algorithms and sampling approaches. 

Table 2: Overview of GNN Models for Fraud Detection 

GNN Model Key Characteristics Pros Cons Suitability for Fraud 
Detection 

Graph Convolutional 
Network (GCN) 

Spectral convolutions on 
graph signals 

Simplicity, well-
studied 

Limited to fixed 
graph structures 

Good for static or slowly 
evolving graphs 

Graph SAGE Samples and aggregates 
neighbor info 

Scalable to large 
graphs 

Approximate 
neighborhood info 

Good for large, dynamic 
transaction graphs 

Graph Attention Uses attention to weigh Captures varying Computationally Excellent for detecting key 
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Network (GAT) neighbor contributions importance of 
neighbors 

intensive fraud signals in complex 
graphs 

 
C. Anomaly Detection in Payment Streams 

Anomaly detection is central to fraud detection systems since it tries to point out any transaction that acts differently than 
what is common [14]. 

a) Traditional Rule-Based and Statistical Methods 
These initial systems mainly depended on writing rules by hand and comparing values against set limits (amounts, 

number of transactions). Even though these methods are easy to understand and quick, they have problems adjusting and can 
report a large number of false positives. 

 
b) Machine Learning Models in Use Today 

More advanced ways use learning with or without labels, such as decision trees and support vector machines (SVMs), to 
establish complex rules from training examples. They help detect more cases, but they have difficulty keeping up with changes in 
fraud methods. 

c) Shortcomings 
Traditional and some ML models are not good at recognising zero-day fraud since these attacks differ greatly from data 

they have processed in the past. Also, high rates of false positives create trouble for real users and increase the pressure on 
investigators. 

Table 3: Summary of Anomaly Detection Methods 

Method Strengths Weaknesses False Positive 
Rate 

Rule-Based Systems Simple, interpretable Rigid, high maintenance High 

Statistical Methods Easy to implement Poor handling of non-stationary data Moderate 

Decision Trees Captures non-linear patterns Prone to overfitting Moderate 

Support Vector Machines (SVM) Robust to overfitting Computationally expensive Moderate to Low 

Neural Networks Powerful pattern recognition Harder to interpret, needs data Variable 

 

 
Figure 2: Architecture Comparison of Traditional Vs LLM-GNN Hybrid Fraud Detection Models 

D. Explainability in Fraud Detection 
As fraud detection models grow in complexity, interpretability becomes essential for regulatory compliance, operational 

trust, and effective human-in-the-loop investigations. 
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a) Importance of Interpretability 
Regulators often require clear explanations for transaction declines, especially under frameworks like PCI DSS and GDPR 

[15]. Explainable AI (XAI) helps bridge the gap between sophisticated black-box models and the need for transparent decision-
making. 

b) Methods for Explainable AI in Transactional Contexts 
Techniques such as attention visualization, feature importance scoring (e.g., SHAP, LIME), and graph-based 

interpretability enable investigators to understand model reasoning. Hybrid architectures combining LLMs and GNNs benefit 
from both textual explanation generation and structural visualization of risk propagation paths. 

III. PROPOSED HYBRID ARCHITECTURE 
The proposed fraud detection system integrates the contextual learning strengths of Large Language Models (LLMs) with 

the relational reasoning capabilities of Graph Neural Networks (GNNs) in a unified hybrid architecture. The design comprises 
five modular components: (1) Data Ingestion Layer, (2) Contextual Embedding Generation, (3) Graph Neural Risk Engine, (4) 
Fusion Layer for Decisioning, and (5) Real-Time Scoring Interface. This pipeline is optimized for low-latency, real-time fraud 
detection at scale. 

A.  Data Ingestion Layer 
The system begins with a robust ingestion layer designed to handle high-velocity transactional data streams. This layer captures 
a comprehensive spectrum of attributes to contextualize each payment event: 

a) Transactional Metadata 
Core attributes including transaction amount, currency, merchant ID, timestamp, geolocation, and payment channel are 

recorded in real time. 

b) Contextual Features 
User device fingerprints, session data, previous behavior patterns, and transaction velocity metrics provide a temporal 

and behavioral context for each transaction. 

c) Merchant Descriptors 
  Metadata about the receiving entity—such as merchant category codes (MCC), historical fraud reports, brand reputation 
scores, and operational geographies—are retrieved and appended to transactions. 

d) User Profiles 
Anonymized user profiles include historical transaction patterns, login histories, and known travel behavior, contributing 

to personalized baselines for anomaly detection.  

All incoming data is normalized and pre-processed through configurable ETL (Extract, Transform, Load) pipelines, 
ensuring consistency and compatibility for downstream tokenization and graph modeling stages. 

B. Contextual Embedding Generation 
a) Tokenization of Transactional Data 

Raw and contextual data collected in the ingestion layer are preprocessed using tokenisation techniques compatible with 
transformer architectures [16]. This involves breaking down structured and semi-structured metadata into tokens or sequences 
that can be embedded into vector spaces. 

b) Transformer-Based Embedding Models 
Transformer models such as BERT (Bidirectional Encoder Representations from Transformers) and GPT (Generative 

Pretrained Transformer) are utilised to convert tokenised input into dense embeddings [17].  

These models differ in architecture BERT uses a bidirectional attention mechanism capturing context from both left and 
right, while GPT follows an autoregressive approach focusing on sequential context. The embeddings generated reflect rich 
semantic and contextual relationships within the transaction data. 

c) Comparison of Embedding Strategies 
The system evaluates different embedding approaches to determine the optimal representation for fraud detection tasks. 

BERT’s strength lies in its ability to understand the full transactional context simultaneously, making it suitable for metadata rich 
in non-sequential information.  
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GPT excels in capturing sequential dependencies, which might be useful for time-ordered event patterns. Hybrid 
approaches combining both embeddings are also considered to leverage complementary strengths. 

Table 4: Comparison of Embedding Strategies and Fusion Techniques in LLM-GNN Hybrid Models 

Embedding 
Strategy 

Description Strengths Weaknesses Fusion Techniques 

BERT-based 
embeddings 

Bidirectional contextual 
embeddings 

Strong at capturing 
full context 

Computationally 
intensive 

Weighted averaging, 
feature concatenation 

GPT-based 
embeddings 

Autoregressive 
embeddings 

Good for sequential 
metadata 

May miss bidirectional 
context 

Attention-based fusion 

Hybrid 
embeddings 

Combination of BERT and 
GPT outputs 

Leverages strengths 
of both 

Higher complexity and 
resource use 

Multi-head attention fusion 

C. Graph Neural Risk Engine 

a) Dynamic Graph Construction 
A dynamic graph is built where nodes represent entities such as customers, merchants, and individual transactions [18]. 

Edges denote relationships or interactions, for example, a transaction linking a customer node to a merchant node. This graph 
structure captures the complex interdependencies present in transactional ecosystems. 

b) Integration of LLM Embeddings as Node Features 
The LLMs supply feature vectors to each transaction and entity metadata and these are attached as embeddings to the 

appropriate nodes in the graph. With semantic embeddings and graph topology, GNN can self-learn and recognise nodes which 
are highly connected. 

c) Message Passing and Risk Propagation 
An edge in a graph neural network is used to pass messages among nodes and each node updates its state by aggregating 

and relying on the features of neighboring nodes that are weighted by the significance of the edge. It means fraud detectors can 

catch single anomalies as well as coordinated actions involving several companies. 

d) Real-Time Risk Scoring 
For every transaction node, the GNN creates a risk score quickly by studying both the property of the node and its 

connections to the rest of the network [19]. With this, we can process and allow users promptly as we respond to changes in how 
fraudsters act. 

D. Fusion Layer for Decisioning 
a) Cooperative Signal Integration 

At the fusion layer, the outputs from the LLM embeddings and the GNN-calculated risk scores are combined to give a 
unified fraud risk assessment. Working together in this way enables transaction context to be understood and relational risk 
insights to be used at the same time. 

b) Fusion Strategies 

Multiple fusion strategies are explored to combine these heterogeneous signals effectively: 
 Weighted Averaging: Assigning pre-tuned weights to balance LLM and GNN contributions based on empirical 

performance. 
 Attention Mechanisms: Employing attention layers to dynamically prioritize one signal over another depending on 

contextual cues or transaction type. 
 Feature Concatenation with Meta-Models: Combining features as input to a secondary model trained to optimize the 

final fraud prediction. 

c) Optimization for Low-Latency Approval 
The fusion layer is built to process payments carefully and quickly because payment authorisation must happen speedily 

[20]. Various methods are used, such as shrinking models, using fewer bits and running processes in parallel, to address the 
demand of high transaction streams. 
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Figure 3: Overview of the Graph Neural Risk Engine Workflow from Data Ingestion to Final Fraud Risk Scoring 

IV. KEY INNOVATIONS AND ADVANTAGES 
The hybrid architecture makes use of up-to-date approaches from transformers and graph neural networks to handle 

main issues like changes over time, having explanations, working in the present moment and accuracy [21] . This part highlights 
what makes this approach different from traditional ones. They depend on spotting zero-day fraud by comparing transactional 
data and instantly passing risks on to connected networks. 

 
A. Capturing Zero-Day Fraud Signatures 

Even though it enables the system to locate many new fraud attempts, architecture designed for zero-day fraud does leave 
the system with a high number of false positives. Customers get annoyed and lose faith due to unjust declines, which is why 
banks need to ensure they handle both accuracy and recall carefully. The issue is tackled with the hybrid model using 
scientifically precise parts, which will be further described soon. 

a) Generalization Through Contextual Embeddings 
A major advantage of the hybrid system is its ability to recognise new kinds of fraud (zero-day fraud). This system is 

made possible by large language models (LLMs) which extract detailed semantic relationships from entry-level financial details. 
LICMs can sense small ways behaviours differ from the usual, thanks to their ability to understand patterns which change over 
time. Being flexible allows organisations to fight off fraud schemes that use innovative methods to attack. 

b) Continuous Learning and Fine-Tuning 
Also, the model is able to adapt when learning systems are continuously updated on new data. Because of this ability to 

adjust, the system can respond to new schemes without needing a complete restart which helps it resist enemy groups as their 
methods develop. 

B. False Positive Suppression 
a) Balancing Fraud Detection and User Experience 

In many cases, fraud detection leads to a high rate of false positives which mistakenly identifies innocent transactions as 
fraud [22]. High numbers of false declines bother customers and reduce the amount of money a business makes. This model 
deals with this by letting LLMs analyses transaction details and giving the final risk score using GNNs. As a result of combining 
all these elements, the approach becomes more accurate without missing many relevant items. 
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b) Precision-Recall Optimization in Hybrid Models 
Merging knowledge from LLM embeddings and GNN structures, the system is able to keep precision and recall more 

balanced. Fraud detection is enhanced and rejected sales are lowered. 

 
Figure 4: Hybrid Model Enabling Zero-Day Fraud Detection 

C. Explainability and Compliance 
a) Interpretable Decision Paths 

For regulatory compliance and operational transparency, it’s essential that the fraud detection model offers interpretable 
outputs. The hybrid architecture achieves this by combining graph-based decision paths—which illustrate relationships between 
customers, transactions, and merchants with contextual embeddings generated by LLMs. This layered decision framework allows 

fraud analysts to trace and understand why specific transactions are flagged. 

b) Visualization Techniques for Investigation 
Improved visualization features help investigative teams see connections in graphs and call out important information 

from each LLM layer [23]. By doing this, fraud can be analyzed quickly and choices are made with better information. 

D. Real-Time Performance and Scalability 
a) Managing Latency in High-Throughput Environments 

When many transactions are happening, real-time processing is needed, without allowing any noticeable delays. The 
introduction of transformers and GNNs increases the complexity, which might stop the system from responding quickly. 

b) Parallelization and Model Distillation Techniques 
To deal with these problems, the architecture uses both advanced parallelizing methods and model distillation. Large 

models are compressed during distillation and multiple tasks can be handled at the same time with parallelization, which both 
lower the wait time for decisions. 

c) Edge Deployment for Enhanced Responsiveness 
A unique way to expand the ands is by having compact models that can be put on merchant terminals or payment 

gateways. It means there is less need for centralized handling of data, delays on the network are reduced and local risk 
assessment becomes possible. 
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Table 5: Metrics Summary Showing Improvements in False Positive Rate, Zero-Day Fraud Detection, and Latency vs 
Baseline Models 

Metric Baseline Model Proposed Hybrid Model Improvement (%) 

False Positive Rate (FPR) 5.2% 2.1% 59.6% 

Zero-Day Fraud Detection 65% 88% 23% 

Average Latency (ms) 120 75 37.5% 

 
From Table 5, it is clear that the hybrid architecture surpasses baseline models in most important key metrics. The false 

positive rate is cut down by nearly 60%, the software can detect unknown fraud 20% better and the time it takes to process is 
reduced by more than a third. Because of these advancements, both fraud detection and the experience of customers is better, 
because transactions are processed smoothly and decline reasons are reduced. 

V. CHALLENGES AND OPEN RESEARCH QUESTIONS 

While the hybrid LLM-GNN architecture offers promising advancements for real-time fraud detection, it also introduces 
several challenges that need to be addressed. This section outlines the key challenges and open research questions for future 
exploration. 

A. Scalability of Transformer Architectures 
 Memory and Compute Constraints: Transformer-based models, though powerful, are resource-intensive. Real-time 

payment streams generate high volumes of data, necessitating models that can operate efficiently with minimal latency. 
The challenge lies in scaling transformer architectures to handle these demands without sacrificing performance. 
Solutions such as model pruning, distillation, and specialized hardware accelerators are under investigation but require 
further refinement for deployment in high-throughput environments. 

B. Data Privacy and Security Concerns 
 Sensitive Data Handling: Payment transactions involve highly sensitive data, including customer identities and 

merchant details. Integrating LLMs and GNNs for fraud detection raises concerns about data privacy, especially when 
embeddings and graph structures could inadvertently leak information [23]. Approaches such as federated learning, 
differential privacy, and encryption of model parameters are being explored, but operationalizing these techniques in 
production systems remains a challenge. 

C. Training Data Quality and Bias 
a) Imbalanced Datasets and Discrimination Risks 

Training data often reflects imbalances across different customer demographics and transaction patterns. These 
imbalances can lead to biased model behavior, where certain groups are unfairly targeted with higher false positives or 
negatives. Ensuring fairness and accuracy requires advanced data curation methods, synthetic data augmentation, and 
continuous monitoring of model outputs. 

 

Figure 5: Open Challenges in Context-Aware Fraud Detection (Scalability, Privacy, Explainability, Adaptability)Model 
Explainability vs Complexity Trade-off 

b) Balancing Interpretability and Performance 
Hybrid systems that use LLMs and GNNs are superior in finding out about sophisticated and rare types of fraud, yet their 

transparency can be weakened by involving these technologies. Mistakes here can be serious for customers and can result in 
significant penalties, depending on the current rules. 
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i) Current Challenges 
 Opacity of Embeddings and Graph Propagation: LLM-generated embeddings compress contextual information into 

high-dimensional vectors, making them difficult to interpret. Similarly, the message-passing mechanisms within GNNs 
create complex dependencies that obscure the contribution of specific features to a fraud decision. 

 Lack of Standardized XAI Methods: Existing explainability techniques are often designed for simpler models such as 
decision trees or logistic regression. Applying them to LLM-GNN hybrids requires new frameworks that can disentangle 

layered embeddings and graph influence scores. 

ii) Emerging Solutions 
 Attention Mechanism Analysis: Visualizing attention weights in transformers can highlight which parts of the 

transaction context contributed most to the decision. 
 Graph Path Attribution: Techniques that trace high-weight edges or critical subgraphs in GNNs can provide insights 

into risk propagation and anomaly detection pathways. 
 Model-Agnostic Methods: Approaches like SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-

agnostic Explanations) are being adapted to handle hybrid architectures, though challenges remain in preserving 
computational efficiency and interpretability. 

 Regulatory Explainability: Financial institutions need explanations that satisfy compliance requirements, such as the 
EU’s General Data Protection Regulation (GDPR) or the U.S. Equal Credit Opportunity Act (ECOA). This adds pressure 

to develop explainable systems without significantly compromising performance. 

In general, finding a way to balance easy-to-understand models and performance is still an important area in research, 
where experts from ML, different fields and regulators need to work together. 

D. Continuous Learning and Adaptability  
 Challenges in Online Learning: People committing fraud come up with new ways to trick detection systems quickly. 

Deployed traditional models are not designed for learning more with each new situation and often need retraining 
whenever data is renewed. 

i) Key Challenges 
 Concept Drift: As payment systems move and change, the behaviour of payments can become very different from what 

it used to be (due to shifting seasons, new forms of paying or new fraud methods). They don’t evolve, so the results 
start to be problematic and the numbers of wrong outcomes increase. 

 Online Learning Complexity: Continuous learning pipelines must efficiently incorporate new data streams without 
causing model instability. Naïve updates can lead to catastrophic forgetting or overfitting to recent trends. 

 Model Update Governance:Automated updates to models in compliance-bound sectors must have detailed auditing and 
the ability to go back in case of trouble to keep regulated settings safe. 

ii) Promising Approaches 
 Meta-Learning: Meta-learning allows models to improve their ability to learn, which means they can respond quickly to 

new cases of fraud with less information. 
 Online Fine-Tuning: Adjusting the model weights little by little using new data that has been labelled, along with special 

methods to fight overfitting. 
 Reinforcement Learning (RL): Using Reinforcement Learning (RL) in this way allows RL agents to raise or lower the 

detection signal level and pay closer notice to suspicious new events when they learn from fraud alerts[24]. 
 Federated and Privacy-Preserving Learning: Working with both federated and privacy-preserving methods, institutions 

can collaborate with isolated data and improve the model so it works well in different areas [25]. 

Ensuring an organisation continues to adapt, perform well and follow all the rules is complex. Algorithms, system 
structure and regulations all must progress for AI to grow. 

VI. EXPERIMENTAL SETUPS AND BENCHMARKING STRATEGIES 
The framework used needs to be strong to correctly test the proposed hybrid fraud detection system. The authors 

describe the datasets, evaluation measures, ways of simulating and comparison baselines to see if the system performs as 
intended in real life. 
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A. Datasets for Experimentation 
a) Selection of Representative Data 
Experiments depend on industry partners and public repositories for transaction data that is made anonymous to model real-life 
payment setups. Some of the descriptive data available are attributes like: 

 Transaction metadata: timestamps, amounts, merchant IDs, locations, device fingerprints. 
 Contextual information: customer histories, merchant reputations, device categories. 

 Labelling: ground truth annotations for fraudulent and legitimate transactions. 
 Data privacy: regulations are followed by making sure data is treated the same and removing specific information from 

the data sets. 

b) Dataset Characteristics 
The diversity of the datasets reflects a range of transaction types, geographical regions, and fraud patterns. This ensures 

the model’s robustness and generalizability across different environments. 

Table 6: Summary of Dataset Characteristics and Key Benchmarking Metrics Used To Evaluate Fraud Detection Models 

Aspect Details 

Dataset Size 10 million anonymized transactions 

Fraud Rate ~1.2% 

Data Fields Transaction metadata, context info 

Regions Covered North America, Europe, Asia 

Time Span 12 months 

Privacy Compliance GDPR-compliant, fully anonymized 

Evaluation Metrics Precision, Recall, FPR, Latency 

Baseline Models Rule-based, Decision Trees, SVM, LLM, GNN 

B. Metrics for Evaluation 
a) Performance Metrics 
The way to measure the hybrid model is to check its performance in detecting crimes and its overall operational effectiveness. 

 Precision and Recall: Indicating the model’s accuracy in identifying fraud and minimizing false negatives. 
 False Positive Rate (FPR): A critical metric reflecting the trade-off between fraud detection and customer inconvenience. 
 Latency: Measured as the average processing time per transaction, highlighting real-time readiness. 

b) Analyzing by Comparison 

Examining the differences in performance among rule-based systems, standard decision trees, stand-alone transformers 
and stand-alone GNNs (Graph Neural Networks) is carried out to assess if precision, recall and latency can be improved. 

C. Simulation of Real-World Approval Streams 
a) Emulation Environment 
Fraud detection systems must be fast like real-life businesses, where fraud solutions take only milliseconds to respond. It 
contains the following: 

 Streaming transactions with different workloads to check how well the system works. 
 The thresholds change to match the business rules. 
 Tracking of modelling actions and the results they produce down the line (such as acceptance or denial of transactions). 

b) Handling High Volume and Increased Load 
In high-throughput tests like those that happen at shopping peak periods, the hybrid system is verified for its scalability 

and ability to work properly. It makes the model suitable for working in real-world situations. 

D. Comparative Analysis with Traditional and Deep Learning Baselines 
a) Benchmarking Methodology 
Comparisons are performed across multiple baselines, including: 

 Traditional rule-based systems. 
 Machine learning classifiers (e.g., decision trees, support vector machines). 
 Deep learning models: standalone transformer models (e.g., GPT, BERT) and standalone GNN models (e.g., GCN, 

GraphSAGE). 
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 The proposed hybrid LLM-GNN architecture. 

b) Main Findings 
Comparative study points out that the hybrid model has an advantage in identifying frauds, lowering false alerts, faster 

responses and handling changes in fraud strategies. 

VII. FUTURE DIRECTIONS 
Progress in context-aware fraud detection will come from introducing new technologies and structures that focus on 

privacy, efficiency and robustness. It covers some important areas of innovation aimed at enhancing how fraud is detected. 

 
Figure 6: Hybrid Fraud Detection System Workflow, From Data Ingestion To Scoring And Benchmarking 

A. Federated Learning for Privacy-Preserving Training 
With federated learning, organisations can form partnerships to train fraud detection models, not sharing any private 

information. In this mechanism, data from customers and shops is spread out, which protects privacy, but it also makes use of 
data from others to improve accuracy. Employing it in fighting payment fraud can cut down on privacy issues and legal issues. 

B. Advances in Low-Latency Transformer Models 
Transformer systems such as LLaMA and Mistral are created with a main goal to reduce computational needs and 

inference speed. With these updates, it is now possible to do real-time fraud scoring in places handling high transaction volumes. 
Fast architectures allow us to deploy models on devices at the edge of a network, for example, at payment terminals or gateways. 

Table 7: Comparison of Emerging Techniques with Their Potential Benefits and Challenges for Future Fraud Detection 

Systems 

Emerging Technique Potential Benefits Key Challenges 

Federated Learning Privacy preservation, collaborative training Communication overhead, model 
convergence 
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Low-Latency Transformer 
Models 

Faster inference, edge deployment feasibility Balancing accuracy with efficiency 

Multi-Modal Detection Richer context, improved fraud pattern 
recognition 

Data integration complexity, sensor 
reliability 

Regulatory Sandbox 
Deployments 

Safe innovation, compliance assurance Limited scale, regulatory uncertainty 

C. Expansion to Multi-Modal Fraud Detection 
Sending unstructured data like voice input, biometric signals and device statistics, alongside the actual transaction, can 

improve the explanation of what takes place. Combining information from transactions, behaviour and biometrics in multi-
modal models helps detect difficult fraud scenarios. 

D. Regulatory Sandbox Deployments 
Regulatory sandboxes provide controlled environments to test innovative fraud detection solutions with real-world data 

under regulatory oversight. These frameworks support iterative improvements while ensuring compliance, enabling faster 

adoption of novel technologies in the payment ecosystem. 

VII. CONCLUSION 
This research introduces a hybrid system that uses Large Language Models (LLMs) and Graph Neural Networks (GNNs) 

to overcome main issues found in traditional card authorisation systems. Because it includes all vital information and models 
detailed relationships between entities, the proposed design is able to identify innovative types of fraud that older, simple 
solutions may not catch. 

For example, false positives are now reduced, which means customers face fewer rejected transactions and the automated 
system keeps getting better at catching unknown attacks. Because attention visualisation and graph path tracing are used, 
BlockCrawl allows users to trust its decisions and realise that the company complies with all necessary guidelines. 

Besides, the architecture is set up to be used right away since it has to be efficient, yet with low delay under heavy 
payment traffic. It also points out ways to enable the system to update and handle data securely, which is necessary for real-

world use in the sensitive financial domain. 

While promising, the framework opens several avenues for future research, including the integration of federated 
learning to enhance privacy, exploration of low-latency transformer variants, and expansion into multi-modal fraud detection 
encompassing biometric and behavioural signals. Continued collaboration between researchers, industry practitioners, and 
regulators will be pivotal to evolve these context-aware fraud detection systems from prototype to widespread operational use. 

Ultimately, this work contributes a foundational step toward more intelligent, adaptable, and trustworthy fraud detection 
solutions that can keep pace with the ever-changing threat landscape while maintaining seamless and secure payment 
experiences for users worldwide. 
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