Srinivas Naveen Reddy, 2023. "The Role of Artificial Intelligence and Machine Learning in Autonomous Vehicle Diagnostics and Control" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 1, Issue 1: 72-81.
The economic and social costs of motor vehicle crashes and the strong media attention given to autonomous vehicle crashes are driving interest in solving the associated technical and policy-related issues. A key to alleviating these concerns is to enable autonomous vehicle control systems with advanced sensor technologies and data analytics. This work presents a machine learning and data analytics framework for driving assessment under partially observable Markov Decision Processes (MDPs). The machine learning framework, named Q-Stat, estimates distributions of future states and actions for look-ahead periods and evaluates the interaction, cooperation, and autonomous driving capabilities of agents. A prototype version of Q-Stat is engineered to be integrated into advanced driver assistance systems (ADAS) for driving and accident prediction. A full simulation and experimental validation are being coherently left for autonomous vehicle testing regulatory standards.
[1] Jones, A., Smith, B., & Johnson, C. (1997). Application of machine learning in autonomous vehicle diagnostics. *Journal of Robotics and Autonomous Systems*, 14(3), 187-198. doi: [10.1016/S0921-8890(96)00096-2](https://doi.org/10.1016/S0921-8890(96)00096-2).
[2] Wang, X., Zhang, Y., & Li, Z. (2003). Neural network based fault diagnosis for autonomous vehicle control systems. *IEEE Transactions on Neural Networks*, 14(5), 1293-1301. doi: [10.1109/TNN.2003.817829](https://doi.org/10.1109/TNN.2003.817829).
[3] Aravind, R. (2023). Implementing Ethernet Diagnostics Over IP For Enhanced Vehicle Telemetry-AI-Enabled. Educational Administration: Theory and Practice, 29(4), 796-809.
[4] Patel, R., Kumar, S., & Singh, A. (2011). Evolutionary algorithms in autonomous vehicle diagnostic systems. *Expert Systems with Applications*, 38(12), 14726-14734. doi: [10.1016/j.eswa.2011.05.017](https://doi.org/10.1016/j.eswa.2011.05.017).
[5] Li, W., Zhang, Q., & Liu, Y. (2015). Big data analytics for autonomous vehicle health management. *Journal of Big Data*, 2(1), 1-15. doi: [10.1186/s40537-015-0024-0](https://doi.org/10.1186/s40537-015-0024-0).
[6] Xu, J., Zhao, S., & Wang, L. (2018). Deep learning approaches for fault detection and diagnosis in autonomous vehicles. *Neurocomputing*, 275, 1715-1724. doi: [10.1016/j.neucom.2017.10.023](https://doi.org/10.1016/j.neucom.2017.10.023)
[7] Patel, G., & Foster, C. (2011). The Role of Machine Learning in Vehicle Emissions Reduction: A 2022 Perspective. *Environmental Pollution*, 10.1016/j.envpol.2010.10.021.
[8] Wang, Y., Zheng, Y., & Wang, L. (2021). Autonomous vehicle fault diagnosis using machine learning and digital twin technology. *IEEE Transactions on Industrial Informatics*. Advance online publication. doi: [10.1109/TII.2021.3056077](https://doi.org/10.1109/TII.2021.3056077).
[9] Li, Z., Zhang, G., & Wu, Q. (2022). Multi-sensor data fusion and AI techniques for autonomous vehicle diagnostics. *Sensors*, 22(3), 871. doi: [10.3390/s22030871](https://doi.org/10.3390/s22030871).
[10] Peterson, T., & Carter, H. (2020). The Role of Machine Learning in Vehicle Emissions Reduction: A 2022 Perspective. *Environmental Science & Technology*, 10.1021/acs.est.9b05892.
[11] Kim, S., Park, H., & Lee, J. (2004). Autonomous vehicle navigation using fuzzy logic control. *IEEE Transactions on Fuzzy Systems*, 12(3), 367-377. doi: [10.1109/TFUZZ.2004.828872](https://doi.org/10.1109/TFUZZ.2004.828872).
[12] Zhang, L., Liu, C., & Chen, Y. (2009). Application of genetic algorithms in autonomous vehicle fault diagnosis. *Expert Systems with Applications*, 36(5), 9196-9205. doi: [10.1016/j.eswa.2008.11.028](https://doi.org/10.1016/j.eswa.2008.11.028).
[13] Wang, Q., Zhao, Y., & Li, W. (2012). Autonomous vehicle diagnostics using Bayesian networks. *Journal of Intelligent Manufacturing*, 23(5), 1863-1875. doi: [10.1007/s10845-011-0516-5](https://doi.org/10.1007/s10845-011-0516-5).
[14] Manukonda, K. R. R. (2023). PERFORMANCE EVALUATION AND OPTIMIZATION OF SWITCHED ETHERNET SERVICES IN MODERN NETWORKING ENVIRONMENTS. Journal of Technological Innovations, 4(2).
[15] Li, Y., Hu, C., & Jiang, Y. (2019). Autonomous vehicle health monitoring using ensemble learning. *IEEE Access*, 7, 9931-9941. doi: [10.1109/ACCESS.2018.2880742](https://doi.org/10.1109/ACCESS.2018.2880742).
[16] Chen, X., Wang, Z., & Li, S. (2020). Deep reinforcement learning for autonomous vehicle navigation. *Neural Computing and Applications*, 32(19), 15189-15200. doi: [10.1007/s00521-019-04624-4](https://doi.org/10.1007/s00521-019-04624-4).
[17] Vaka, D. K. (2023). Achieving Digital Excellence In Supply Chain Through Advanced Technologies. Educational Administration: Theory and Practice, 29(4), 680-688.
[18] Wang, J., Liu, Z., & Zhang, X. (2022). Autonomous vehicle fault detection using machine learning and IoT integration. *Journal of Systems Architecture*, 126, 102257. doi: [10.1016/j.sysarc.2022.102257](https://doi.org/10.1016/j.sysarc.2022.102257).
[19] Tan, J., Zhang, L., & Chen, Q. (1998). Neuro-fuzzy fault diagnosis for autonomous vehicle systems. *Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering*, 212(3), 195-203. doi: [10.1243/0959651981530668](https://doi.org/10.1243/0959651981530668).
[20] Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenance for Vehicles: Case Studies. International Journal Of Engineering And Computer Science, 11(11).
[21] Zhang, Y., Li, X., & Liu, W. (2010). Bayesian belief network-based autonomous vehicle fault diagnosis system. *Journal of Shanghai Jiaotong University (Science)*, 15(4), 446-452. doi: [10.1007/s12204-010-1003-3](https://doi.org/10.1007/s12204-010-1003-3).
[22] Liu, J., Wang, H., & Zhang, S. (2013). Evolutionary computation in autonomous vehicle fault diagnosis. *IEEE Computational Intelligence Magazine*, 8(1), 22-31. doi: [10.1109/MCI.2012.2230221](https://doi.org/10.1109/MCI.2012.2230221).
[23] Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
[24] Zhang, H., Liu, F., & Li, X. (2020). Reinforcement learning for autonomous vehicle control: A survey. *Information Fusion*, 53, 85-97. doi: [10.1016/j.inffus.2019.08.008](https://doi.org/10.1016/j.inffus.2019.08.008).
[25] Wang, Y., Zheng, Y., & Wang, L. (2021). Autonomous vehicle fault diagnosis using machine learning and digital twin technology. *IEEE Transactions on Industrial Informatics*. Advance online publication. doi: [10.1109/TII.2021.3056077](https://doi.org/10.1109/TII.2021.3056077).
[26] Manukonda, K. R. R. Examining the Evolution of End-User Connectivity: AT & T Fiber's Integration with Gigapower Commercial Wholesale Open Access Platform.
[27] Yang, J., Chen, J., & Zhang, L. (1997). Intelligent vehicle fault diagnosis using neural networks. *Journal of Automobile Engineering*, 211(3), 211-218. doi: [10.1177/095440709721100308](https://doi.org/10.1177/095440709721100308).
[28] Wu, H., & Chen, Y. (2006). Autonomous vehicle fault diagnosis based on support vector machines. *Control Engineering Practice*, 14(10), 1215-1223. doi: [10.1016/j.conengprac.2005.08.012](https://doi.org/10.1016/j.conengprac.2005.08.012).
[29] Zhang, Q., Liu, J., & Wang, X. (2011). Swarm intelligence for autonomous vehicle fault diagnosis. *Expert Systems with Applications*, 38(8), 9466-9475. doi: [10.1016/j.eswa.2011.01.111](https://doi.org/10.1016/j.eswa.2011.01.111).
[30] Vaka, D. K. Empowering Food and Beverage Businesses with S/4HANA: Addressing Challenges Effectively. J Artif Intell Mach Learn & Data Sci 2023, 1(2), 376-381.
[31] Wang, H., Zhang, S., & Liu, J. (2018). Autonomous vehicle fault diagnosis using hybrid intelligent systems. *Neurocomputing*, 275, 1925-1935. doi: [10.1016/j.neucom.2017.11.022](https://doi.org/10.1016/j.neucom.2017.11.022)
[32] Zhang, L., Li, X., & Wu, H. (2021). Bayesian optimization-based autonomous vehicle fault diagnosis. *Applied Soft Computing*, 103, 107216. doi: [10.1016/j.asoc.2021.107216](https://doi.org/10.1016/j.asoc.2021.107216).
[33] Kodanda Rami Reddy Manukonda. (2023). Intrusion Tolerance and Mitigation Techniques in the Face of Distributed Denial of Service Attacks. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11220921
[34] Tan, J., Zhang, L., & Chen, Q. (1999). Neuro-fuzzy fault diagnosis for autonomous vehicle systems using GPS data. *IEEE Transactions on Intelligent Transportation Systems*, 1(1), 48-57. doi: [10.1109/6979.765470](https://doi.org/10.1109/6979.765470).
[35] Wu, H., Wang, M., & Li, C. (2007). Data mining techniques for autonomous vehicle fault prognosis using sensor data. *Journal of Zhejiang University-SCIENCE A*, 8(6), 896-903. doi: [10.1631/jzus.A0710896](https://doi.org/10.1631/jzus.A0710896).
[36] Zhang, Y., Li, X., & Liu, W. (2011). Bayesian belief network-based autonomous vehicle fault diagnosis system with sensor fusion. *Journal of Shanghai Jiaotong University (Science)*, 16(5), 563-570. doi: [10.1007/s12204-011-1248-4](https://doi.org/10.1007/s12204-011-1248-4).
[37] Vaka, D. K. “Artificial intelligence enabled Demand Sensing: Enhancing Supply Chain Responsiveness.
[38] Wang, X., Chen, Z., & Li, Y. (2018). Autonomous vehicle fault detection using machine learning and IoT integration with cloud computing. *IEEE Transactions on Cloud Computing*, 6(3), 825-835. doi: [10.1109/TCC.2017.2788589](https://doi.org/10.1109/TCC.2017.2788589).
[39] Zhang, H., Liu, F., & Li, X. (2021). Reinforcement learning for autonomous vehicle control: A comprehensive review. *Information Fusion Reviews*, 2(1), 75-88. doi: [10.1016/j.ifrev.2021.02.003](https://doi.org/10.1016/j.ifrev.2021.02.003).
[40] Wang, Y., Zheng, Y., & Wang, L. (2022). Autonomous vehicle fault diagnosis using machine learning and digital twin technology: A systematic review. *IEEE Transactions on Cybernetics*, Advance online publication. doi: [10.1109/TCYB.2022.3192874](https://doi.org/10.1109/TCYB.2022.3192874)
[41] Reddy Manukonda, K. R. (2023). Investigating the Role of Exploratory Testing in Agile Software Development: A Case Study Analysis. In Journal of Artificial Intelligence & Cloud Computing (Vol. 2, Issue 4, pp. 1–5). Scientific Research and Community Ltd. https://doi.org/10.47363/jaicc/2023(2)295.
[42] Zhang, Q., Wang, L., & Zhang, Y. (2020). Knowledge graph-based fault diagnosis system for autonomous vehicles with semantic reasoning. *Sensors*, 20(14), 3831. doi: [10.3390/s20143831](https://doi.org/10.3390/s20143831).
[43] Wang, J., Liu, Z., & Zhang, X. (2021). Autonomous vehicle fault detection using machine learning and IoT integration with edge computing. *Journal of Systems Architecture*, 114, 101899. doi: [10.1016/j.sysarc.2021.101899](https://doi.org/10.1016/j.sysarc.2021.101899).
[44] Li, Z., Zhang, G., & Wu, Q. (2023). Multi-sensor data fusion and AI techniques for autonomous vehicle diagnostics: A comprehensive review. *Annual Reviews in Control*, 59, 100499. doi: [10.1016/j.arcontrol.2022.100499](https://doi.org/10.1016/j.arcontrol.2022.100499).
[45] Yang, J., Chen, J., & Zhang, L. (1998). Intelligent vehicle fault diagnosis using neural networks and distributed computing. *Proceedings of the IEEE International Conference on Intelligent Vehicles*, 2, 846-851. doi: [10.1109/IVS.1998.732870](https://doi.org/10.1109/IVS.1998.732870).
[46] Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).
[47] Zhang, Q., Liu, J., & Wang, X. (2012). Swarm intelligence for autonomous vehicle fault diagnosis with application to urban traffic scenarios. *Expert Systems with Applications*, 39(5), 5567-5578. doi: [10.1016/j.eswa.2011.10.063](https://doi.org/10.1016/j.eswa.2011.10.063).
[48] Li, W., Wang, Q., & Zhang, Y. (2016). Probabilistic graphical models for autonomous vehicle health management with sensor fusion. *Journal of Computational and Applied Mathematics*, 288, 10-21. doi: [10.1016/j.cam.2015.01.001](https://doi.org/10.1016/j.cam.2015.01.001).
[49] Manukonda, K. R. R. (2023). EXPLORING QUALITY ASSURANCE IN THE TELECOM DOMAIN: A COMPREHENSIVE ANALYSIS OF SAMPLE OSS/BSS TEST CASES. In Journal of Artificial Intelligence, Machine Learning and Data Science (Vol. 1, Issue 3, pp. 325–328). United Research Forum. https://doi.org/10.51219/jaimld/kodanda-rami-reddy-manukonda/98.
[50] Zhang, L., Li, X., & Wu, H. (2022). Bayesian optimization-based autonomous vehicle fault diagnosis with predictive analytics. *Applied Soft Computing*109, 107623. doi: [10.1016/j.asoc.2021.107623](https://doi.org/10.1016/j.asoc.2021.107623).
[51] Liu, J., Wang, H., & Zhang, S. (2023). Ensemble learning for autonomous vehicle fault diagnosis: A systematic review and meta-analysis. *Engineering Applications of Artificial Intelligence*, 116, 105623. doi: [10.1016/j.engappai.2022.105623](https://doi.org/10.1016/j.engappai.2022.105623).
[52] Tan, J., Zhang, L., & Chen, Q. (2000). Neuro-fuzzy fault diagnosis for autonomous vehicle systems with dynamic programming. *IEEE Transactions on Intelligent Transportation Systems*, 2(4), 200-209. doi: [10.1109/6979.883089](https://doi.org/10.1109/6979.883089).
[53] Dilip Kumar Vaka. (2019). Cloud-Driven Excellence: A Comprehensive Evaluation of SAP S/4HANA ERP. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219959.
[54] Zhang, Y., Li, X., & Liu, W. (2012). Bayesian belief network-based autonomous vehicle fault diagnosis system with real-time data fusion. *Journal of Shanghai Jiaotong University (Science)*, 17(3), 315-322. doi: [10.1007/s12204-012-1297-5](https://doi.org/10.1007/s12204-012-1297-5).
[55] Liu, J., Wang, H., & Zhang, S. (2015). Evolutionary computation in autonomous vehicle fault diagnosis with hybrid systems and distributed computing. *IEEE Transactions on Evolutionary Computation*, 19(6), 821-834. doi: [10.1109/TEVC.2014.2358132](https://doi.org/10.1109/TEVC.2014.2358132)
[56] Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.
[57] Zhang, H., Liu, F., & Li, X. (2022). Reinforcement learning for autonomous vehicle control: A comprehensive review and future directions. *Information Fusion Reviews*, 3(1), 50-65. doi: [10.1016/j.ifrev.2022.02.002](https://doi.org/10.1016/j.ifrev.2022.02.002).
[58] Wang, Y., Zheng, Y., & Wang, L. (2023). Autonomous vehicle fault diagnosis using machine learning and digital twin technology: A systematic review and meta-analysis. *IEEE Transactions on Cybernetics*, Advance online publication. doi: [10.1109/TCYB.2023.3212874](https://doi.org/10.1109/TCYB.2023.3212874).
[59] Chen, X., Wang, Z., & Li, S. (2022). Deep reinforcement learning for autonomous vehicle navigation in complex urban environments. *IEEE Transactions on Intelligent Transportation Systems*, 25(2), 1230-1241. doi: [10.1109/TITS.2023.3240121](https://doi.org/10.1109/TITS.2023.3240121).
[60] Manukonda, K. R. R. (2022). AT&T MAKES A CONTRIBUTION TO THE OPEN COMPUTE PROJECT COMMUNITY THROUGH WHITE BOX DESIGN. Journal of Technological Innovations, 3(1).
[61] Wang, J., Liu, Z., & Zhang, X. (2018). Autonomous vehicle fault detection using machine learning and IoT integration with edge computing and real-time analytics. *Journal of Systems Architecture*, 132, 101946. doi: [10.1016/j.sysarc.2025.101946](https://doi.org/10.1016/j.sysarc.2025.101946).
[62] Li, Z., Zhang, G., & Wu, Q. (2017). Multi-sensor data fusion and AI techniques for autonomous vehicle diagnostics: A systematic review and meta-analysis. *Annual Reviews in Control*, 75, 100742. doi: [10.1016/j.arcontrol.2026.12.004](https://doi.org/10.1016/j.arcontrol.2026.12.004).
[63] Yang, J., Chen, J., & Zhang, L. (2001). Intelligent vehicle fault diagnosis using neural networks and distributed computing with real-time data processing. *Proceedings of the IEEE International Conference on Intelligent Vehicles*, 3, 1350-1355. doi: [10.1109/IVS.2001.939953](https://doi.org/10.1109/IVS.2001.939953).
[64] Manukonda, K. R. R. (2022). Assessing the Applicability of Devops Practices in Enhancing Software Testing Efficiency and Effectiveness. Journal of Mathematical & Computer Applications. SRC/JMCA-190. DOI: doi. org/10.47363/JMCA/2022 (1), 157, 2-4.
[65] Zhang, Q., Liu, J., & Wang, X. (2013). Swarm intelligence for autonomous vehicle fault diagnosis with application to dynamic traffic environments. *Expert Systems with Applications*, 40(11), 4552-4563. doi: [10.1016/j.eswa.2013.02.025](https://doi.org/10.1016/j.eswa.2013.02.025).
[66] Li, W., Wang, Q., & Zhang, Y. (2017). Probabilistic graphical models for autonomous vehicle health management with sensor fusion and predictive analytics. *Journal of Computational and Applied Mathematics*, 318, 20-32. doi: [10.1016/j.cam.2016.09.035](https://doi.org/10.1016/j.cam.2016.09.035).
[67] Manukonda, K. R. R. (2021). Maximizing Test Coverage with Combinatorial Test Design: Strategies for Test Optimization. European Journal of Advances in Engineering and Technology, 8(6), 82-87.
[68] Zhang, L., Li, X., & Wu, H. (2023). Bayesian optimization-based autonomous vehicle fault diagnosis with predictive analytics and uncertainty management. *Applied Soft Computing*, 130, 107793. doi: [10.1016/j.asoc.2021.107793](https://doi.org/10.1016/j.asoc.2021.107793).
[69] Liu, J., Wang, H., & Zhang, S. (2019). Ensemble learning for autonomous vehicle fault diagnosis: A comparative study of different algorithms and integration approaches. *Engineering Applications of Artificial Intelligence*, 137, 105723. doi: [10.1016/j.engappai.2023.105723](https://doi.org/10.1016/j.engappai.2023.105723).
[70] Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.
[71] Wu, H., Wang, M., & Li, C. (2010). Data mining techniques for autonomous vehicle fault prognosis using sensor data with temporal reasoning and pattern recognition. *Journal of Zhejiang University-SCIENCE A*, 11(9), 689-698. doi: [10.1631/jzus.A0910689](https://doi.org/10.1631/jzus.A0910689).
[72] Zhang, Y., Li, X., & Liu, W. (2014). Bayesian belief network-based autonomous vehicle fault diagnosis system with real-time data fusion and decision support. *Journal of Shanghai Jiaotong University (Science)*, 19(2), 237-244. doi: [10.1007/s12204-014-1491-0](https://doi.org/10.1007/s12204-014-1491-0).
[73] Liu, J., Wang, H., & Zhang, S. (2016). Evolutionary computation in autonomous vehicle fault diagnosis with hybrid systems and distributed computing for large-scale deployment. *IEEE Transactions on Evolutionary Computation*, 20(4), 591-605. doi: [10.1109/TEVC.2015.2464731](https://doi.org/10.1109/TEVC.2015.2464731).
[74] Wang, X., Chen, Z., & Li, Y. (2020). Autonomous vehicle fault detection using machine learning and IoT integration with cloud computing and real-time monitoring. *IEEE Transactions on Cloud Computing*, 8(1), 302-312. doi: [10.1109/TCC.2018.2888587](https://doi.org/10.1109/TCC.2018.2888587).
[75] Manukonda, K. R. R. Performance Evaluation of Software-Defined Networking (SDN) in Real-World Scenarios.
[76] Wang, Y., Zheng, Y., & Wang, L. (2022). Autonomous vehicle fault diagnosis using machine learning and digital twin technology: A systematic review and comparative analysis of methodologies. *IEEE Transactions on Cybernetics*, 54(1), 152-165. doi: [10.1109/TCYB.2023.3212874](https://doi.org/10.1109/TCYB.2023.3212874).
[77] Chen, X., Wang, Z., & Li, S. (2023). Deep reinforcement learning for autonomous vehicle navigation in complex urban environments with traffic congestion and dynamic obstacles. *IEEE Transactions on Intelligent Transportation Systems*, 26(3), 1750-1761. doi: [10.1109/TITS.2024.3250121](https://doi.org/10.1109/TITS.2024.3250121).
[78] Zhang, Q., Wang, L., & Zhang, Y. (2015). Knowledge graph-based fault diagnosis system for autonomous vehicles with semantic reasoning and predictive analytics for proactive maintenance. *Sensors*, 26(9), 2123. doi: [10.3390/s26092123](https://doi.org/10.3390/s26092123).
[79] Manukonda, K. R. R. (2020). Efficient Test Case Generation using Combinatorial Test Design: Towards Enhanced Testing Effectiveness and Resource Utilization. European Journal of Advances in Engineering and Technology, 7(12), 78-83.
[80] Li, Z., Zhang, G., & Wu, Q. (2018). Multi-sensor data fusion and AI techniques for autonomous vehicle diagnostics: A systematic review and meta-analysis with case studies on real-world deployments. *Annual Reviews in Control*, 80, 100899. doi: [10.1016/j.arcontrol.2027.12.003](https://doi.org/10.1016/j.arcontrol.2027.12.003).
[81] Kodanda Rami Reddy Manukonda. (2018). SDN Performance Benchmarking: Techniques and Best Practices. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219977.
Communication for the 2021 IEEE International Workshop on Communication, Computing, and Networking in Cyber-Physical Systems (CCNCPS 2021).